Solar eclipse of January 26, 2009 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | −0.282 |
Magnitude | 0.9282 |
Maximum eclipse | |
Duration | 474 s (7 min 54 s) |
Coordinates | 34°06′S70°12′E / 34.1°S 70.2°E |
Max. width of band | 280 km (170 mi) |
Times (UTC) | |
Greatest eclipse | 7:59:45 |
References | |
Saros | 131 (50 of 70) |
Catalog # (SE5000) | 9527 |
An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, January 26, 2009, [1] [2] [3] with a magnitude of 0.9282. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.3 days after apogee (on January 23, 2009, at 0:10 UTC), the Moon's apparent diameter was smaller. [4]
The eclipse was visible from a narrow corridor beginning in the south Atlantic Ocean and sweeping eastward 900 km south of Africa, slowly curving northeast through the Indian Ocean. Its first landfall was in the Cocos Islands followed by southern Sumatra and western Java. It continued somewhat more easterly across central Borneo, across the northwestern edge of Celebes, then ending just before Mindanao, Philippines. The duration of annularity at greatest eclipse lasted 7 minutes, 53.58 seconds, but at greatest duration lasted 7 minutes, 56.05 seconds. A partial eclipse was visible for parts of Southern Africa, East Antarctica, Southeast Asia, the Philippines, and Australia.
Progression from Colombo, Sri Lanka
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [5]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2009 January 26 at 04:57:42.7 UTC |
First Umbral External Contact | 2009 January 26 at 06:03:44.5 UTC |
First Central Line | 2009 January 26 at 06:06:54.1 UTC |
First Umbral Internal Contact | 2009 January 26 at 06:10:04.0 UTC |
First Penumbral Internal Contact | 2009 January 26 at 07:22:11.5 UTC |
Greatest Duration | 2009 January 26 at 07:43:23.8 UTC |
Equatorial Conjunction | 2009 January 26 at 07:47:30.2 UTC |
Ecliptic Conjunction | 2009 January 26 at 07:56:23.1 UTC |
Greatest Eclipse | 2009 January 26 at 07:59:44.5 UTC |
Last Penumbral Internal Contact | 2009 January 26 at 08:37:36.7 UTC |
Last Umbral Internal Contact | 2009 January 26 at 09:49:34.5 UTC |
Last Central Line | 2009 January 26 at 09:52:42.3 UTC |
Last Umbral External Contact | 2009 January 26 at 09:55:49.6 UTC |
Last Penumbral External Contact | 2009 January 26 at 11:01:46.9 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.92825 |
Eclipse Obscuration | 0.86165 |
Gamma | −0.28197 |
Sun Right Ascension | 20h35m32.8s |
Sun Declination | -18°38'55.0" |
Sun Semi-Diameter | 16'14.6" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 20h35m55.2s |
Moon Declination | -18°53'18.2" |
Moon Semi-Diameter | 14'51.6" |
Moon Equatorial Horizontal Parallax | 0°54'32.2" |
ΔT | 65.8 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
January 26 Ascending node (new moon) | February 9 Descending node (full moon) |
---|---|
Annular solar eclipse Solar Saros 131 | Penumbral lunar eclipse Lunar Saros 143 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [6]
The partial solar eclipses on June 1, 2011 and November 25, 2011 occur in the next lunar year eclipse set.
Solar eclipse series sets from 2008 to 2011 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
121 Partial in Christchurch, New Zealand | February 7, 2008 Annular | −0.95701 | 126 Totality in Kumul, Xinjiang, China | August 1, 2008 Total | 0.83070 | |
131 Annularity in Palangka Raya, Indonesia | January 26, 2009 Annular | −0.28197 | 136 Totality in Kurigram District, Bangladesh | July 22, 2009 Total | 0.06977 | |
141 Annularity in Jinan, Shandong, China | January 15, 2010 Annular | 0.40016 | 146 Totality in Hao, French Polynesia | July 11, 2010 Total | −0.67877 | |
151 Partial in Poland | January 4, 2011 Partial | 1.06265 | 156 | July 1, 2001 Partial | −1.49171 |
This eclipse is a part of Saros series 131, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on August 1, 1125. It contains total eclipses from March 27, 1522 through May 30, 1612; hybrid eclipses from June 10, 1630 through July 24, 1702; and annular eclipses from August 4, 1720 through June 18, 2243. The series ends at member 70 as a partial eclipse on September 2, 2369. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 28 at 58 seconds on May 30, 1612, and the longest duration of annularity was produced by member 50 at 7 minutes, 54 seconds on January 26, 2009. All eclipses in this series occur at the Moon’s ascending node of orbit. [7]
Series members 39–60 occur between 1801 and 2200: | ||
---|---|---|
39 | 40 | 41 |
September 28, 1810 | October 9, 1828 | October 20, 1846 |
42 | 43 | 44 |
October 30, 1864 | November 10, 1882 | November 22, 1900 |
45 | 46 | 47 |
December 3, 1918 | December 13, 1936 | December 25, 1954 |
48 | 49 | 50 |
January 4, 1973 | January 15, 1991 | January 26, 2009 |
51 | 52 | 53 |
February 6, 2027 | February 16, 2045 | February 28, 2063 |
54 | 55 | 56 |
March 10, 2081 | March 21, 2099 | April 2, 2117 |
57 | 58 | 59 |
April 13, 2135 | April 23, 2153 | May 5, 2171 |
60 | ||
May 15, 2189 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between June 21, 1982 and June 21, 2058 | ||||
---|---|---|---|---|
June 21 | April 8–9 | January 26 | November 13–14 | September 1–2 |
117 | 119 | 121 | 123 | 125 |
June 21, 1982 | April 9, 1986 | January 26, 1990 | November 13, 1993 | September 2, 1997 |
127 | 129 | 131 | 133 | 135 |
June 21, 2001 | April 8, 2005 | January 26, 2009 | November 13, 2012 | September 1, 2016 |
137 | 139 | 141 | 143 | 145 |
June 21, 2020 | April 8, 2024 | January 26, 2028 | November 14, 2031 | September 2, 2035 |
147 | 149 | 151 | 153 | 155 |
June 21, 2039 | April 9, 2043 | January 26, 2047 | November 14, 2050 | September 2, 2054 |
157 | ||||
June 21, 2058 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
September 8, 1801 (Saros 112) | August 7, 1812 (Saros 113) | July 8, 1823 (Saros 114) | June 7, 1834 (Saros 115) | May 6, 1845 (Saros 116) |
April 5, 1856 (Saros 117) | March 6, 1867 (Saros 118) | February 2, 1878 (Saros 119) | January 1, 1889 (Saros 120) | December 3, 1899 (Saros 121) |
November 2, 1910 (Saros 122) | October 1, 1921 (Saros 123) | August 31, 1932 (Saros 124) | August 1, 1943 (Saros 125) | June 30, 1954 (Saros 126) |
May 30, 1965 (Saros 127) | April 29, 1976 (Saros 128) | March 29, 1987 (Saros 129) | February 26, 1998 (Saros 130) | January 26, 2009 (Saros 131) |
December 26, 2019 (Saros 132) | November 25, 2030 (Saros 133) | October 25, 2041 (Saros 134) | September 22, 2052 (Saros 135) | August 24, 2063 (Saros 136) |
July 24, 2074 (Saros 137) | June 22, 2085 (Saros 138) | May 22, 2096 (Saros 139) | April 23, 2107 (Saros 140) | March 22, 2118 (Saros 141) |
February 18, 2129 (Saros 142) | January 20, 2140 (Saros 143) | December 19, 2150 (Saros 144) | November 17, 2161 (Saros 145) | October 17, 2172 (Saros 146) |
September 16, 2183 (Saros 147) | August 16, 2194 (Saros 148) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
June 16, 1806 (Saros 124) | May 27, 1835 (Saros 125) | May 6, 1864 (Saros 126) |
April 16, 1893 (Saros 127) | March 28, 1922 (Saros 128) | March 7, 1951 (Saros 129) |
February 16, 1980 (Saros 130) | January 26, 2009 (Saros 131) | January 5, 2038 (Saros 132) |
December 17, 2066 (Saros 133) | November 27, 2095 (Saros 134) | November 6, 2124 (Saros 135) |
October 17, 2153 (Saros 136) | September 27, 2182 (Saros 137) |
An annular solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, February 16, 1999, with a magnitude of 0.9928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.9 days after apogee and 4.3 days before perigee.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 1, 2016, with a magnitude of 0.9736. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. In this case, annularity was observed in Gabon, Congo, Democratic Republic of the Congo, Tanzania, Mozambique, Madagascar, and Réunion.
An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, September 3, 2081, with a magnitude of 1.072. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will begin at the Atlantic Ocean, off European mainland at 07:26:49 UTC and will end at Indonesian island of Java at 10:43:03 UTC.
An annular solar eclipse occurred at the Moon’s ascending node of orbit on Sunday, June 21, 2020, with a magnitude of 0.994. An annular solar eclipse is a solar eclipse whose presentation looks like a ring, or annulus; it occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most, but not all, of the Sun's light. In this instance, the Moon's apparent diameter was 0.6% smaller than the Sun's.
An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 5.6 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, February 6, 2027, with a magnitude of 0.9281. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, January 4, 1973, with a magnitude of 0.9303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.75 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, March 18, 1969, with a magnitude of 0.9954. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 5.1 days after perigee and 7.7 days before apogee.
An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, September 1, 1951, with a magnitude of 0.9747. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 5.4 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.
An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.
An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 23, 1908, with a magnitude of 1.0024. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter was larger.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). The Moon's apparent diameter was near the average diameter because it occurred 6.1 days after perigee and 7.25 days before apogee.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, February 14, 1915, with a magnitude of 0.9789. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 6.7 days after perigee and 7.1 days before apogee.
An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, March 28, 1922, with a magnitude of 0.9381. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.75 days after apogee, the Moon's apparent diameter was smaller.
Photos: