Solar eclipse of September 13, 2015

Last updated
Solar eclipse of September 13, 2015
Double Photobomb (21389400576).jpg
From the Solar Dynamics Observatory
SE2015Sep13P.png
Map
Type of eclipse
NaturePartial
Gamma −1.1004
Magnitude 0.7875
Maximum eclipse
Coordinates 72°06′S2°18′W / 72.1°S 2.3°W / -72.1; -2.3
Times (UTC)
Greatest eclipse6:55:19
References
Saros 125 (54 of 73)
Catalog # (SE5000) 9542

A partial solar eclipse occurred at the Moon's ascending node of orbit on Sunday, September 13, 2015, [1] [2] [3] [4] with a magnitude of 0.7875. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse was visible for parts of Southern Africa and East Antarctica.

Images

SE2015Sep13P.gif
Animated path
Animation from sun solar eclipse of September 13, 2015.gif
View from center of sun

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [5]

September 13, 2015 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2015 September 13 at 04:42:47.9 UTC
Ecliptic Conjunction2015 September 13 at 06:42:23.9 UTC
Greatest Eclipse2015 September 13 at 06:55:19.2 UTC
Equatorial Conjunction2015 September 13 at 07:36:27.0 UTC
Last Penumbral External Contact2015 September 13 at 09:07:32.8 UTC
September 13, 2015 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.78750
Eclipse Obscuration0.70966
Gamma−1.10039
Sun Right Ascension11h23m54.6s
Sun Declination+03°53'20.1"
Sun Semi-Diameter15'53.6"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension11h22m43.3s
Moon Declination+02°56'47.8"
Moon Semi-Diameter14'43.0"
Moon Equatorial Horizontal Parallax0°54'00.6"
ΔT67.8 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of September 2015
September 13
Ascending node (new moon)
September 28
Descending node (full moon)
SE2015Sep13P.png Lunar eclipse chart close-2015Sep28.png
Partial solar eclipse
Solar Saros 125
Total lunar eclipse
Lunar Saros 137

Eclipses in 2015

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 125

Inex

Triad

Solar eclipses of 2015–2018

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [6]

The partial solar eclipse on July 13, 2018 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 2015 to 2018
Descending node Ascending node
SarosMapGammaSarosMapGamma
120
Total solar eclipse of March 20, 2015 by Damien Deltenre (licensed for free use). (32844461616).jpg
Totality in Longyearbyen, Svalbard
March 20, 2015
SE2015Mar20T.png
Total
0.94536125
Double Photobomb (21389400576).jpg
Solar Dynamics Observatory

September 13, 2015
SE2015Sep13P.png
Partial
−1.10039
130
Total Solar Eclipse, 9 March 2016, from Balikpapan, East Kalimantan, Indonesia.JPG
Balikpapan, Indonesia
March 9, 2016
SE2016Mar09T.png
Total
0.26092135
Eclipse 20160901 center.jpg
Annularity in L'Étang-Salé, Réunion
September 1, 2016
SE2016Sep01A.png
Annular
−0.33301
140
26-feb-2017 solar ecipse.jpg
Partial from Buenos Aires, Argentina
February 26, 2017
SE2017Feb26A.png
Annular
−0.45780145
2017 Total Solar Eclipse (NHQ201708210100) - square crop.jpg
Totality in Madras, OR, USA
August 21, 2017
Solar eclipse global visibility 2017Aug21T.png
Total
0.43671
150
Eclipse Solar Parcial - 15.02.2018 - Olivos, GBA (Argentina).jpg
Partial in Olivos, Buenos Aires, Argentina
February 15, 2018
SE2018Feb15P.png
Partial
−1.21163155
2018.08.11 1214Z C8F6 Solar Eclipse (43976490201).jpg
Partial in Huittinen, Finland
August 11, 2018
SE2018Aug11P.png
Partial
1.14758

Saros 125

This eclipse is a part of Saros series 125, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on February 4, 1060. It contains total eclipses from June 13, 1276 through July 16, 1330; hybrid eclipses on July 26, 1348 and August 7, 1366; and annular eclipses from August 17, 1384 through August 22, 1979. The series ends at member 73 as a partial eclipse on April 9, 2358. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 14 at 1 minutes, 11 seconds on June 25, 1294, and the longest duration of annularity was produced by member 48 at 7 minutes, 23 seconds on July 10, 1907. All eclipses in this series occur at the Moon’s ascending node of orbit. [7]

Series members 43–64 occur between 1801 and 2200:
434445
SE1817May16A.gif
May 16, 1817
SE1835May27A.gif
May 27, 1835
SE1853Jun06A.gif
June 6, 1853
464748
SE1871Jun18A.gif
June 18, 1871
SE1889Jun28A.png
June 28, 1889
SE1907Jul10A.png
July 10, 1907
495051
SE1925Jul20A.png
July 20, 1925
SE1943Aug01A.png
August 1, 1943
SE1961Aug11A.png
August 11, 1961
525354
SE1979Aug22A.png
August 22, 1979
SE1997Sep02P.png
September 2, 1997
SE2015Sep13P.png
September 13, 2015
555657
SE2033Sep23P.png
September 23, 2033
SE2051Oct04P.png
October 4, 2051
SE2069Oct15P.png
October 15, 2069
585960
SE2087Oct26P.png
October 26, 2087
Saros125 59van73 SE2105Nov06P.jpg
November 6, 2105
Saros125 60van73 SE2123Nov18P.jpg
November 18, 2123
616263
Saros125 61van73 SE2141Nov28P.jpg
November 28, 2141
Saros125 62van73 SE2159Dec09P.jpg
December 9, 2159
Saros125 63van73 SE2177Dec20P.jpg
December 20, 2177
64
Saros125 64van73 SE2195Dec31P.jpg
December 31, 2195

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 1, 2000 and July 1, 2076
July 1–2April 19–20February 5–7November 24–25September 12–13
117119121123125
SE2000Jul01P.png
July 1, 2000
SE2004Apr19P.png
April 19, 2004
SE2008Feb07A.png
February 7, 2008
SE2011Nov25P.png
November 25, 2011
SE2015Sep13P.png
September 13, 2015
127129131133135
SE2019Jul02T.png
July 2, 2019
SE2023Apr20H.png
April 20, 2023
SE2027Feb06A.png
February 6, 2027
SE2030Nov25T.png
November 25, 2030
SE2034Sep12A.png
September 12, 2034
137139141143145
SE2038Jul02A.png
July 2, 2038
SE2042Apr20T.png
April 20, 2042
SE2046Feb05A.png
February 5, 2046
SE2049Nov25H.png
November 25, 2049
SE2053Sep12T.png
September 12, 2053
147149151153155
SE2057Jul01A.png
July 1, 2057
SE2061Apr20T.png
April 20, 2061
SE2065Feb05P.png
February 5, 2065
SE2068Nov24P.png
November 24, 2068
SE2072Sep12T.png
September 12, 2072
157
SE2076Jul01P.png
July 1, 2076

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1819Mar25P.gif
March 25, 1819
(Saros 107)
SE1830Feb23P.gif
February 23, 1830
(Saros 108)
SE1841Jan22P.gif
January 22, 1841
(Saros 109)
SE1862Nov21P.gif
November 21, 1862
(Saros 111)
SE1895Aug20P.gif
August 20, 1895
(Saros 114)
SE1906Jul21P.png
July 21, 1906
(Saros 115)
SE1917Jun19P.png
June 19, 1917
(Saros 116)
SE1928May19T.png
May 19, 1928
(Saros 117)
SE1939Apr19A.png
April 19, 1939
(Saros 118)
SE1950Mar18A.png
March 18, 1950
(Saros 119)
SE1961Feb15T.png
February 15, 1961
(Saros 120)
SE1972Jan16A.png
January 16, 1972
(Saros 121)
SE1982Dec15P.png
December 15, 1982
(Saros 122)
SE1993Nov13P.png
November 13, 1993
(Saros 123)
SE2004Oct14P.png
October 14, 2004
(Saros 124)
SE2015Sep13P.png
September 13, 2015
(Saros 125)
SE2026Aug12T.png
August 12, 2026
(Saros 126)
SE2037Jul13T.png
July 13, 2037
(Saros 127)
SE2048Jun11A.png
June 11, 2048
(Saros 128)
SE2059May11T.png
May 11, 2059
(Saros 129)
SE2070Apr11T.png
April 11, 2070
(Saros 130)
SE2081Mar10A.png
March 10, 2081
(Saros 131)
SE2092Feb07A.png
February 7, 2092
(Saros 132)
SE2103Jan08T.png
January 8, 2103
(Saros 133)
SE2113Dec08A.png
December 8, 2113
(Saros 134)
SE2124Nov06A.png
November 6, 2124
(Saros 135)
SE2135Oct07T.png
October 7, 2135
(Saros 136)
SE2146Sep06A.png
September 6, 2146
(Saros 137)
SE2157Aug05A.png
August 5, 2157
(Saros 138)
SE2168Jul05T.png
July 5, 2168
(Saros 139)
SE2179Jun05A.png
June 5, 2179
(Saros 140)
SE2190May04A.png
May 4, 2190
(Saros 141)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1813Feb01A.gif
February 1, 1813
(Saros 118)
SE1842Jan11A.gif
January 11, 1842
(Saros 119)
SE1870Dec22T.png
December 22, 1870
(Saros 120)
SE1899Dec03A.png
December 3, 1899
(Saros 121)
SE1928Nov12P.png
November 12, 1928
(Saros 122)
SE1957Oct23T.png
October 23, 1957
(Saros 123)
SE1986Oct03H.png
October 3, 1986
(Saros 124)
SE2015Sep13P.png
September 13, 2015
(Saros 125)
SE2044Aug23T.png
August 23, 2044
(Saros 126)
SE2073Aug03T.png
August 3, 2073
(Saros 127)
SE2102Jul15A.png
July 15, 2102
(Saros 128)
Saros129 58van80 SE2131Jun25T.jpg
June 25, 2131
(Saros 129)
SE2160Jun04T.png
June 4, 2160
(Saros 130)
SE2189May15A.png
May 15, 2189
(Saros 131)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 17, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit between Wednesday, April 17 and Thursday, April 18, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 31, 1989</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 2, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, October 2, 1978, with a magnitude of 0.6905. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 3, 1975</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, November 3, 1975, with a magnitude of 0.9588. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 27, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 20, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, September 20 and Wednesday, September 21, 1960, with a magnitude of 0.6139. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 14, 2050</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 14, 2050, with a magnitude of 0.8874. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 9, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 6, 2086</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086, with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 10, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 10, 1942, with a magnitude of 0.523. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 30, 1924</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, August 30, 1924, with a magnitude of 0.4245. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 24, 1927</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "September 13, 2015 Partial Solar Eclipse". timeanddate. Retrieved 12 August 2024.
  2. Orwig, Jessica. "A NASA video shows what a total lunar eclipse looks like from the moon, and it's mind-blowing". Business Insider.
  3. European Space Agency. "Image: Proba-2 captures partial solar eclipse". phys.org.
  4. Wall, Mike (September 12, 2015). "Watch Sunday's Partial Solar Eclipse Live in Slooh Webcast". Space.com.
  5. "Partial Solar Eclipse of 2015 Sep 13". EclipseWise.com. Retrieved 12 August 2024.
  6. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  7. "NASA - Catalog of Solar Eclipses of Saros 125". eclipse.gsfc.nasa.gov.