September 2015 lunar eclipse

Last updated

Total lunar eclipse
September 28, 2015
Lunar eclipse September 27 2015 greatest Alfredo Garcia Jr.jpg
From Murrieta, California, 2:52 UTC
Ecliptic north up
Lunar eclipse chart close-2015Sep28.png
The Moon passes right to left (west to east) through Earth's shadow
Saros (and member) 137 (28 of 81)
Gamma −0.3296
Magnitude 1.2764
Duration (hr:mn:sc)
Totality1:11:55
Partial3:19:52
Penumbral5:10:41
Contacts (UTC)
P10:11:47
U11:07:11
U22:11:10
Greatest2:47:08
U33:23:05
U44:27:03
P45:22:27
Lunar eclipse chart close-2015Sep28 wide.png
The Moon crosses Earth's shadow in Pisces, passing west to east (right to left) as shown here in hourly movements. Uranus, at magnitude 5.7, can be seen in binoculars 16 degrees east of the total eclipsed Moon.

A total lunar eclipse took place between 27 and 28 September 2015. It was seen on Sunday evening, 27 September, in the Americas; while in Europe, Africa, and the Middle East, it was seen in the early hours of Monday morning, 28 September. It was the latter of two total lunar eclipses in 2015, and the final in a tetrad (four total lunar eclipses in series). Other eclipses in the tetrad are those of 15 April 2014, 8 October 2014, and 4 April 2015.

Contents

The Moon appeared larger than normal, because the Moon was just 1 hour past its closest approach to Earth in 2015 at mid-eclipse, sometimes called a supermoon. The Moon's apparent diameter was larger than 34' viewed straight overhead, just off the coast of northeast Brazil. [1] [2]

The total lunar eclipse was darker than expected, possibly due to ash left behind from eruptions of the Calbuco volcano in April 2015. [3]

Background

This animated video explains the September 2015 supermoon lunar eclipse.

A lunar eclipse occurs when the Moon passes within Earth's umbra (shadow). As the eclipse begins, Earth's shadow first darkens the Moon slightly. Then, the shadow begins to "cover" part of the Moon, turning it a dark red-brown color (typically – the color can vary based on atmospheric conditions). The Moon appears to be reddish because of Rayleigh scattering (the same effect that causes sunsets to appear reddish) and the refraction of that light by Earth's atmosphere into its umbra. [4]

The following simulation shows the approximate appearance of the Moon passing through Earth's shadow. The Moon's brightness is exaggerated within the umbral shadow. The northern portion of the Moon was closest to the center of the shadow, making it darkest, and most red in appearance.

Animation September 28 2015 lunar eclipse appearance.gif

Visibility

The eclipse was visible over Europe, the Middle East, Africa, and America.

Lunar eclipse from moon-2015Sep28.png
View of Earth from Moon at greatest eclipse
Lunar eclipse from moon simulation-sep 28 2015.png
Simulated appearance of Earth and atmospheric ring of sunlight
Visibility Lunar Eclipse 2015-09-28.png

Timing

Local times of contacts
Time Zone
adjustments from
UTC
-7h -6h -5h -4h -3h -2h -1h 0h +1h +2h +3h
PDT
MST
MDT CDT
PET
EDT
BOT
ADT
AMST
ART
GMT
WET
WEST
CET
BST
CEST
EET
MSK−1
EEST
FET
MSK
EventEvening 27 SeptemberMorning 28 September
P1Penumbral begins*N/A†N/A†7:12 pm8:12 pm9:12 pm10:12 pm11:12 pm12:12 am1:12 am2:12 am3:12 am
U1Partial beginsN/A†7:07 pm8:07 pm9:07 pm10:07 pm11:07 pm12:07 am1:07 am2:07 am3:07 am4:07 am
U2Total begins7:11 pm8:11 pm9:11 pm10:11 pm11:11 pm12:11 am1:11 am2:11 am3:11 am4:11 am5:11 am
Mid-eclipse7:47 pm8:47 pm9:47 pm10:47 pm11:47 pm12:47 am1:47 am2:47 am3:47 am4:47 am5:47 am
U3Total ends8:23 pm9:23 pm10:23 pm11:23 pm12:23 am1:23 am2:23 am3:23 am4:23 am5:23 am6:23 am
U4Partial ends9:27 pm10:27 pm11:27 pm12:27 am1:27 am2:27 am3:27 am4:27 am5:27 am6:27 amSet
P4Penumbral ends10:22 pm11:22 pm12:22 am1:22 am2:22 am3:22 am4:22 am5:22 am6:22 amSetSet

† The Moon was not visible during this part of the eclipse in this time zone.

* The penumbral phase of the eclipse changes the appearance of the Moon only slightly and is generally not noticeable. [5]

Contact points relative to Earth's umbral and penumbral shadows, here with the Moon near its descending node Lunar eclipse contact diagram.svg
Contact points relative to Earth's umbral and penumbral shadows, here with the Moon near its descending node
The timing of total lunar eclipses are determined by its contacts: [6]
  • P1 (First contact): Beginning of the penumbral eclipse. Earth's penumbra touches the Moon's outer limb.
  • U1 (Second contact): Beginning of the partial eclipse. Earth's umbra touches the Moon's outer limb.
  • U2 (Third contact): Beginning of the total eclipse. The Moon's surface is entirely within Earth's umbra.
  • Greatest eclipse: The peak stage of the total eclipse. The Moon is at its closest to the center of Earth's umbra.
  • U3 (Fourth contact): End of the total eclipse. The Moon's outer limb exits Earth's umbra.
  • U4 (Fifth contact): End of the partial eclipse. Earth's umbra leaves the Moon's surface.
  • P4 (Sixth contact): End of the penumbral eclipse. Earth's penumbra no longer makes contact with the Moon.

Supermoon

This eclipsed Moon appeared 12.9% larger in diameter than the April 2015 lunar eclipse, measured as 29.66' and 33.47' in diameter from Earth's center, as compared in these simulated images.

A supermoon is the coincidence of a full moon or a new moon with the closest approach the Moon makes to the Earth on its elliptical orbit, resulting in the largest apparent size of the lunar disk as seen from Earth. This was the last supermoon lunar eclipse until 31 January 2018.

Supermoon lunar eclipse 2015.png

Eclipses of 2015

The eclipse was one of four lunar eclipses in a short-lived series at the descending node of the Moon's orbit.

The lunar year series repeats after 12 lunations, or 354 days (shifting back about 10 days in sequential years). Because of the date shift, Earth's shadow will be about 11 degrees west in sequential events.

Lunar eclipse series sets from 2013–2016
Ascending node Descending node
Saros Viewing
date
TypeGammaSarosViewing
date
TypeGamma
112
Partial lunar eclipse 2013.04.25.jpg
2013 Apr 25
Lunar eclipse from moon-2013Apr25.png
Partial
Lunar eclipse chart close-2013Apr25.png
−1.0121117
MG 8074 (10353408985) (cropped).jpg
2013 Oct 18
Lunar eclipse from moon-2013Oct18.png
Penumbral
Lunar eclipse chart close-2013Oct18.png
1.1508
122
Lunar eclipse April 15 2014 California Alfredo Garcia Jr1.jpg
2014 Apr 15
Lunar eclipse from moon-2014Apr15.png
Total
Lunar eclipse chart close-2014Apr15.png
−0.3017127
Lunar eclipse October 8 2014 California Alfredo Garcia Jr mideclipse.JPG
2014 Oct 08
Lunar eclipse from moon-2014Oct08.png
Total
Lunar eclipse chart close-2014Oct08.png
0.3827
132
Lunar eclipse April 4 2015 greatest Alfredo Garcia Jr LA.jpg
2015 Apr 04
Lunar eclipse from moon-2015Apr04.png
Total
Lunar eclipse chart close-2015Apr04.png
0.4460137
Lunar eclipse September 27 2015 greatest Alfredo Garcia Jr.jpg
2015 Sep 28
Lunar eclipse from moon-2015Sep28.png
Total
Lunar eclipse chart close-2015Sep28.png
−0.3296
142 2016 Mar 23
Lunar eclipse from moon-2016Mar23.png
Penumbral
Lunar eclipse chart close-2016Mar23.png
1.1592147
Penumbral eclipse on Sep.16, 2016 (29735793325).jpg
2016 Sep 16
Lunar eclipse from moon-2016Sep16.png
Penumbral
Lunar eclipse chart close-2016Sep16.png
−1.0549
Last set 2013 May 25 Last set 2012 Nov 28
Next set 2017 Feb 11 Next set 2016 Aug 18

Saros series

It is part of Saros series 137.

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). [7] This lunar eclipse is related to two annular solar eclipses of solar saros 144.

22 September 2006 2 October 2024
SE2006Sep22A.png SE2024Oct02A.png

See also

Related Research Articles

<span class="mw-page-title-main">Lunar eclipse</span> Astronomical event

A lunar eclipse is an astronomical event that occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. Such alignment occurs during an eclipse season, approximately every six months, during the full moon phase, when the Moon's orbital plane is closest to the plane of the Earth's orbit.

<span class="mw-page-title-main">March 2007 lunar eclipse</span> Total lunar eclipse of 3 March 2007

A total lunar eclipse took place on 3 March 2007, the first of two eclipses in 2007. The Moon entered the penumbral shadow at 20:18 UTC, and the umbral shadow at 21:30 UTC. The total phase lasted between 22:44 UTC and 23:58 UTC with a distinctive brick-red shade. The Moon left the umbra shadow at 01:11 UTC and left the penumbra shadow at 02:24 UTC 2007-03-04. The second lunar eclipse of 2007 occurred on 28 August.

<span class="mw-page-title-main">February 2008 lunar eclipse</span> Total lunar eclipse of 20 February 2008

A total lunar eclipse occurred on February 20 and February 21, 2008. It was visible in the eastern evening sky on February 20 for all of North and South America, and on February 21 in the predawn western sky from most of Africa and Europe. Greatest Eclipse occurring on Thursday, February 21, 2008, at 03:26:03 UTC, totality lasting 49 minutes and 45.6 seconds.

<span class="mw-page-title-main">May 2003 lunar eclipse</span> Total lunar eclipse May 16, 2003

A total lunar eclipse took place on Friday, May 16, 2003, the first of two total lunar eclipses in 2003, the other being on November 9, 2003. A shallow total eclipse saw the Moon in relative darkness for 52 minutes and 3.1 seconds. The Moon was 12.938% of its diameter into the Earth's umbral shadow, and should have been significantly darkened. The partial eclipse lasted for 3 hours, 15 minutes and 3.1 seconds in total. Occurring only 0.5 days after perigee, the Moon's apparent diameter was 6.2% larger than average. At greatest eclipse the Moon was only 357,693 km from the Earth, making it a Super Full Moon.

<span class="mw-page-title-main">December 2009 lunar eclipse</span>

A partial lunar eclipse was visible on 31 December 2009. It was the last and largest of four minor lunar eclipses in 2009. This lunar eclipse was also notable, because it occurred during a blue moon and was near perigee. The next eclipse on New Year's Eve and blue moon will occur on 31 December 2028.

<span class="mw-page-title-main">September 1997 lunar eclipse</span> Total lunar eclipse September 16, 1997

A total lunar eclipse took place at the Moon's descending node of the orbit on Tuesday, September 16, 1997, the second of two lunar eclipses in 1997. A shallow total eclipse saw the Moon in relative darkness for 1 hour, 1 minute and 30.8 seconds. The Moon was 19.094% of its diameter into the Earth's umbral shadow, and should have been significantly darkened. The partial eclipse lasted for 3 hours, 16 minutes and 28.2 seconds in total. The penumbral eclipse lasted for 5 hours, 8 minutes and 20.1 seconds. The partial eclipse lasted for 3 hours, 16 minutes and 28.2 seconds. The total eclipse lasted for 1 hour, 1 minute and 30.8 seconds. Maximum eclipse was at 18:46:39.1 UTC. The moon's apparent diameter was extremely large because occurred only 3 hours and 21 minutes past perigee. The Moon was only 356,986 km of the Earth at greatest eclipse.

<span class="mw-page-title-main">June 2012 lunar eclipse</span> Partial Lunar Eclipse on June 4 2012

A partial lunar eclipse took place on 4 June 2012. It was the first of two lunar eclipses occurring in 2012, the second eclipse set to happen on 28 November. The Moon was about 37% covered by the Earth's northern umbral shadow at maximum eclipse.

<span class="mw-page-title-main">April 2014 lunar eclipse</span> Total lunar eclipse in April 2014

A total lunar eclipse took place on 15 April 2014. It was the first of two total lunar eclipses in 2014, and the first in a tetrad. Subsequent eclipses in the tetrad are those of 8 October 2014, 4 April 2015, and 28 September 2015. Occurring 6.7 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">October 2014 lunar eclipse</span> Partial lunar eclipse of 8 October 2014

A total lunar eclipse took place on Wednesday 8 October 2014. It is the second of two total lunar eclipses in 2014, and the second in a tetrad. Other eclipses in the tetrad are those of 15 April 2014, 4 April 2015, and 28 September 2015. Occurring only 2.1 days after perigee, the Moon's apparent diameter was larger, 1960.6 arcseconds.

<span class="mw-page-title-main">April 2015 lunar eclipse</span> Total lunar eclipse of 4 April 2015

A total lunar eclipse took place on 4 April 2015. It is the former of two total lunar eclipses in 2015, and the third in a tetrad. Other eclipses in the tetrad are those of 15 April 2014, 8 October 2014, and 28 September 2015.

<span class="mw-page-title-main">November 2022 lunar eclipse</span> Total lunar eclipse on 8 November 2022

A total lunar eclipse occurred on Tuesday, 8 November 2022. The southern limb of the Moon passed through the center of the Earth's shadow. It surpassed the previous eclipse as the longest total lunar eclipse visible from nearly all of North America since 17 August 1989, and until 26 June 2029. Occurring only 5.8 days before apogee, the Moon's apparent diameter was smaller. The next total lunar eclipse will take place on 14 March 2025. A lunar occultation of Uranus happened during the eclipse. It was the first total lunar eclipse on Election Day in US history. This event was referred in media coverage as a "beaver blood moon".

<span class="mw-page-title-main">July 2018 lunar eclipse</span> Central lunar eclipse on 27 July 2018

A total lunar eclipse occurred at the Moon's descending node on 27 July 2018. The Moon passed through the center of Earth's shadow in what was the first central lunar eclipse since 15 June 2011. It was also the second total lunar eclipse in 2018, after the one on 31 January. It was the longest total lunar eclipse of the 21st century, but not the longest in the 3rd millennium. The longest total lunar eclipse of the 3rd millennium will occur on May 12, 2264, lasting 106 minutes and 13.2 seconds, which will be the longest total lunar eclipse since 2000, and the longest one until 3107.

<span class="mw-page-title-main">January 2018 lunar eclipse</span> Total lunar eclipse of January 31, 2018

A total lunar eclipse occurred on 31 January 2018. The Moon was near its perigee on 30 January and as such may be described as a "supermoon", when the Moon's distance from the Earth is less than 360,000 km. The previous supermoon lunar eclipse was in September 2015.

<span class="mw-page-title-main">January 2019 lunar eclipse</span> Total lunar eclipse of 21 January 2019

A total lunar eclipse occurred on 21 January 2019 UTC. For observers in the Americas, the eclipse took place between the evening of Sunday, 20 January and the early morning hours of Monday, 21 January. For observers in Europe and Africa, the eclipse occurred during the morning of 21 January. The Moon was near its perigee on 21 January and as such can be described as a "supermoon".

<span class="mw-page-title-main">May 2021 lunar eclipse</span> Total lunar eclipse of 26 May 2021

A total lunar eclipse occurred on 26 May 2021. A lunar eclipse occurs when the Moon moves into the Earth's shadow. This can occur only when the Sun, Earth, and Moon are exactly or very closely aligned with Earth between the other two, which can only happen at a full moon. The eclipsed moon appeared as a faint red disk in the sky due to a small amount of light being refracted through the earth's atmosphere; this appearance gives a lunar eclipse its nickname of a Blood Moon.

<span class="mw-page-title-main">August 2026 lunar eclipse</span>

A partial lunar eclipse will take place on Friday 28 August 2026. The moon will be almost be inside the umbra, but not quite be contained within the umbral shadow at greatest eclipse.

<span class="mw-page-title-main">April 1967 lunar eclipse</span> Total lunar eclipse April 24, 1967

A total lunar eclipse took place on Monday, April 24, 1967, the first of two total lunar eclipses in 1967, the second being on October 18, 1967.

<span class="mw-page-title-main">November 1955 lunar eclipse</span> Partial lunar eclipse November 29, 1955

A partial lunar eclipse took place on Tuesday, November 29, 1955 with an umbral eclipse magnitude of 0.11899. A partial lunar eclipse happens when the Earth moves between the Sun and the Full Moon, but they are not precisely aligned. Only part of the Moon's visible surface moves into the dark part of the Earth's shadow. A partial lunar eclipse occurs when the Earth moves between the Sun and Moon but the three celestial bodies do not form a straight line in space. When that happens, a small part of the Moon's surface is covered by the darkest, central part of the Earth's shadow, called the umbra. The rest of the Moon is covered by the outer part of the Earth's shadow called the penumbra. It was the second of two lunar eclipses in 1955, first being the penumbral lunar eclipse on June 5. It also occurred near perigee, making such event a supermoon.

A partial lunar eclipse took place on Tuesday, August 5, 1952. The Earth's shadow on the Moon was clearly visible in this eclipse, with 53.2% of the Moon in shadow; the partial eclipse lasted for 2 hours and 27 minutes. The Moon's apparent diameter was larger and Supermoon because the eclipse occurred only 45 minutes before perigee.

<span class="mw-page-title-main">Total penumbral lunar eclipse</span> Total penumbral lunar eclipse

A total penumbral lunar eclipse is a lunar eclipse that occurs when the Moon becomes completely immersed in the penumbral cone of the Earth without touching the umbra.

References

  1. Sky and Telescope
  2. Here’s the Scoop on Sunday’s Supermoon Eclipse, Bob King
  3. "Why Was September's Lunar Eclipse So Dark? - Universe Today". Universe Today. 5 October 2015. Retrieved 8 August 2017.
  4. Fred Espenak & Jean Meeus. "Visual Appearance of Lunar Eclipses". NASA. Retrieved 13 April 2014.
  5. Espenak, Fred. "Lunar Eclipses for Beginners". MrEclipse. Retrieved 7 April 2014.
  6. Clarke, Kevin. "On the nature of eclipses". Inconstant Moon. Cyclopedia Selenica. Retrieved 19 December 2010.
  7. Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros