Solar eclipse of August 12, 1673

Last updated
Solar eclipse of August 12, 1673
SE1673Aug12T.png
Map
Type of eclipse
NatureTotal
Gamma −0.1946
Magnitude 1.0731
Maximum eclipse
Duration375 s (6 min 15 s)
Coordinates 4°36′N40°36′E / 4.6°N 40.6°E / 4.6; 40.6
Max. width of band242 km (150 mi)
Times (UTC)
Greatest eclipse9:04:05
References
Saros 130 (33 of 73)
Catalog # (SE5000) 8721

A total solar eclipse occurred on August 12, 1673. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Contents

Description

The eclipse was visible in nearly all of Africa (with the exception of a part of what is now southern Namibia and southern South Africa), southern Europe, parts of the Middle East and other parts of Asia, Mysore, Maldives, Ceylon (now Sri Lanka), Sumatra and western Java as well as a part of the middle Atlantic and most of the Indian Ocean. [1] It was part of solar saros 130. [2]

The umbral portion which was as far as 242 km, it included areas that were 50 miles (90–100 km) south of the islands of Santiago and Maio in Cape Verde, Senegambia including the kingdoms of Sine and Saloum, Mali, Songhai (or Songhay), Wadai, Darfur, a part of what is Sudan and the South Sudan and Ethiopia. The greatest occurred at 4.6 N, 40.6 E near the Dawa River in Ethiopia not far from the present day border with Kenya at 9:04 UTC (1:04 PM local time) and lasted for over 6 minutes. [1]

The eclipse showed up to 40% obscuration in Europe and 75% in Yemen in the Middle East, areas that showed up to 50% obscuration included Spanish controlled Canary Islands Morocco, Ottoman Algeria, Tunis, Libya and Egypt and near Oman and on the other side present-day Gabon, the Congo Basin, Malawi, present-day northern Mozambique and southern Madagascar. On Madagascar, it showed from 40% in the south to nearly 80% obscuration in the north. In Madeira, it showed around 30–35% obscuration, 90–95% obscuration in parts of Cape Verde, around 55% in Socotra, 85–90% in the Mascarene Islands and about 25% in the Chagos Archipelago. Areas that were on the rim of the eclipse included the area of the Azores, France including Brittany, the Alps, Ottoman Moldavia and Armenia, Persia (now Iran), Mysore and Sumatra and very close to Antarctica.

The eclipse started at sunrise off Cape Verde, the umbral path went southeast and finished as sunset off the coast of Australia (called[New Holland at the time).

The subsolar marking was at Yemen in the area at the time that divided the Ottoman Empire.

See also

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 9, 2016</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Tuesday, March 8 and Wednesday, March 9, 2016, with a magnitude of 1.045. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's and the apparent path of the Sun and Moon intersect, blocking all direct sunlight and turning daylight into darkness; the Sun appears to be black with a halo around it. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.25 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 4, 1983</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, December 4, 1983, with a magnitude of 0.9666. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.5 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of June 30, 1973</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, June 30, 1973, with a magnitude of 1.0792. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 11 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 21, 2020</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s ascending node of orbit on Sunday, June 21, 2020, with a magnitude of 0.994. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.2 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of March 29, 1987</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, March 29, 1987, with a magnitude of 1.0013. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. The eclipse lasted a maximum of only 7.57 seconds. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 4.7 days after perigee and 7.8 days before apogee.

<span class="mw-page-title-main">Solar eclipse of October 2, 1959</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, October 2, 1959, with a magnitude of 1.0325. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.1 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of December 24, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, December 24, 1973, with a magnitude of 0.9174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.25 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of December 14, 1955</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, December 14, 1955, with a magnitude of 0.9176. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 24 hours before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of July 2, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of August 22, 1979</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 22, 1979, with a magnitude of 0.9329. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 15 hours before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of November 5, 2059</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, November 5, 2059, with a magnitude of 0.9417. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.2 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of September 12, 2072</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, September 12, 2072, with a magnitude of 1.0558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 7 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). The Moon's apparent diameter was near the average diameter because it occurred 6.1 days after perigee and 7.25 days before apogee.

<span class="mw-page-title-main">Solar eclipse of May 29, 1938</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, May 29, 1938, with a magnitude of 1.0552. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 19, 1865</span> Annular solar eclipse October 19, 1865

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 19, 1865, with a magnitude of 0.9263. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 9 hours after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of May 12, 1706</span> Total eclipse

The solar eclipse on May 12, 1706 was a total eclipse.

<span class="mw-page-title-main">Solar eclipse of July 14, 1749</span> Annular Solar eclipse of July 14, 1749

An annular solar eclipse occurred on July 14, 1749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 16, 1792</span> Annular solar eclipse September 16 1792

An annular solar eclipse occurred on September 16, 1792. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 23, 1860</span> Annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit between Sunday, January 22 and Monday, January 23, 1860, with a magnitude of 0.9168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.7 days before apogee, the Moon's apparent diameter was smaller.

References

  1. 1 2 "Solar eclipse of August 12, 1673". NASA. Retrieved March 18, 2017.
  2. "Solar Saros 130". NASA. Retrieved March 17, 2017.