Solar eclipse of June 16, 1806

Last updated
Solar eclipse of June 16, 1806
SE1806Jun16T.png
Map
Type of eclipse
NatureTotal
Gamma 0.3204
Magnitude 1.0604
Maximum eclipse
Duration295 s (4 min 55 s)
Coordinates 42°12′N64°36′W / 42.2°N 64.6°W / 42.2; -64.6
Max. width of band210 km (130 mi)
Times (UTC)
Greatest eclipse16:24:27
References
Saros 124 (43 of 73)
Catalog # (SE5000) 9056

A total solar eclipse occurred at the Moon's descending node of orbit on Monday, June 16, 1806 (sometimes dubbed Tecumseh's Eclipse), with a magnitude of 1.0604. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days before perigee (on June 18, 1806, at 9:30 UTC), the Moon's apparent diameter was larger. [1]

Contents

The path of totality was visible from parts of modern-day northwestern Mexico, the states of Arizona, New Mexico, Colorado, northwestern Texas, Oklahoma, Kansas, Missouri, southeastern Iowa, Illinois, Indiana, Michigan, Ohio, Pennsylvania, New York, Connecticut, Massachusetts, Vermont, New Hampshire, Rhode Island, and Maine in the United States, Western Sahara, Mauritania, Mali, and Niger. A partial solar eclipse was also visible for parts of North America, Central America, the Caribbean, Europe, and West Africa.

The eclipse was predicted by Shawnee prophet Tenskwatawa and its appearance aided unity among the Indigenous peoples of North America. Astronomer José Joaquín de Ferrer observed and named the solar corona during this eclipse.

Tenskwatawa's prediction

It has been called Tecumseh's Eclipse after the Shawnee chief, Tecumseh. He realized that the only hope for the various tribes in east and central North America was to join. He was assisted by his brother, Tenskwatawa, called The Prophet, who called for a rejection of European influence and a return to traditional values. This tribal unity threatened William Henry Harrison, the Territorial Governor of Indiana and future 9th President of the United States. Harrison tried to discredit the Shawnee leader by challenging Tenskwatawa to prove his powers. He wrote: "If he (Tenskwatawa) is really a prophet, ask him to cause the Sun to stand still or the Moon to alter its course, the rivers to cease to flow or the dead to rise from their graves."

Tenskwatawa declared that the Great Spirit was angry at Harrison and would give a sign. "Fifty days from this day there will be no cloud in the sky. Yet, when the Sun has reached its highest point, at that moment will the Great Spirit take it into her hand and hide it from us. The darkness of night will thereupon cover us and the stars will shine round about us. The birds will roost and the night creatures will awaken and stir." On that day, there was an eclipse, and Harrison's attempt to divide the Shawnee people backfired spectacularly. Then, Tecumseh ordered the Great Spirit to release the sun. [2]

Observations

Ferrer's illustration of the eclipse Solar eclipse 1806Jun16-Corona-Ferrer.png
Ferrer's illustration of the eclipse

José Joaquín de Ferrer observed from Kinderhook, New York and gave the name corona to the glow of the faint outer atmosphere of the Sun seen during a total eclipse. He proposed that the corona must belong to the Sun, not the Moon, because of its great size. Ferrer also stated that during the total eclipse of 1806, the irregularities of the Moon's surface were plainly discernible. [3]

Capel Lofft observed from the United Kingdom of Great Britain and Ireland. [4]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [5]

June 16, 1806 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1806 June 16 at 13:47:18.5 UTC
First Umbral External Contact1806 June 16 at 14:44:05.8 UTC
First Central Line1806 June 16 at 14:45:19.5 UTC
First Umbral Internal Contact1806 June 16 at 14:46:33.4 UTC
First Penumbral Internal Contact1806 June 16 at 15:49:22.2 UTC
Ecliptic Conjunction1806 June 16 at 16:21:07.3 UTC
Equatorial Conjunction1806 June 16 at 16:22:27.7 UTC
Greatest Duration1806 June 16 at 16:24:24.6 UTC
Greatest Eclipse1806 June 16 at 16:24:26.5 UTC
Last Penumbral Internal Contact1806 June 16 at 16:59:34.4 UTC
Last Umbral Internal Contact1806 June 16 at 18:02:18.7 UTC
Last Central Line1806 June 16 at 18:03:34.3 UTC
Last Umbral External Contact1806 June 16 at 18:04:49.9 UTC
Last Penumbral External Contact1806 June 16 at 19:01:31.5 UTC
June 16, 1806 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.06042
Eclipse Obscuration1.12449
Gamma0.32035
Sun Right Ascension05h37m06.5s
Sun Declination+23°21'35.2"
Sun Semi-Diameter15'44.3"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension05h37m11.4s
Moon Declination+23°40'49.1"
Moon Semi-Diameter16'25.5"
Moon Equatorial Horizontal Parallax1°00'17.0"
ΔT12.1 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of June 1806
June 16
Descending node (new moon)
June 30
Ascending node (full moon)
SE1806Jun16T.png
Total solar eclipse
Solar Saros 124
Partial lunar eclipse
Lunar Saros 136

Eclipses in 1806

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 124

Inex

Triad

Solar eclipses of 1805–1808

This eclipse is a member of a semester series . An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [6]

The partial solar eclipses on January 30, 1805 and July 26, 1805 occur in the previous lunar year eclipse set, and the partial solar eclipse on October 19, 1808 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1805 to 1808
Ascending node Descending node
SarosMapGammaSarosMapGamma
109January 1, 1805
SE1805Jan01P.gif
Partial
−1.5315114June 26, 1805
SE1805Jun26P.gif
Partial
1.0462
119December 21, 1805
SE1805Dec21A.gif
Annular
−0.8751124 June 16, 1806
SE1806Jun16T.png
Total
0.3204
129December 10, 1806
SE1806Dec10A.gif
Annular
−0.1627134June 6, 1807
SE1807Jun06H.gif
Hybrid
−0.4577
139November 29, 1807
SE1807Nov29H.gif
Hybrid
0.5377144May 25, 1808
SE1808May25P.gif
Partial
−1.2665
149November 18, 1808
SE1808Nov18P.gif
Partial
1.1874

Saros 124

This eclipse is a part of Saros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211 through September 22, 1968, and a hybrid eclipse on October 3, 1986. There are no annular eclipses in this set. The series ends at member 73 as a partial eclipse on May 11, 2347. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 5 minutes, 46 seconds on May 3, 1734. All eclipses in this series occur at the Moon’s descending node of orbit. [7]

Series members 43–64 occur between 1801 and 2200:
434445
SE1806Jun16T.png
June 16, 1806
SE1824Jun26T.png
June 26, 1824
SE1842Jul08T.png
July 8, 1842
464748
SE1860Jul18T.png
July 18, 1860
SE1878Jul29T.png
July 29, 1878
SE1896Aug09T.png
August 9, 1896
495051
SE1914Aug21T.png
August 21, 1914
SE1932Aug31T.png
August 31, 1932
SE1950Sep12T.png
September 12, 1950
525354
SE1968Sep22T.png
September 22, 1968
SE1986Oct03H.png
October 3, 1986
SE2004Oct14P.png
October 14, 2004
555657
SE2022Oct25P.png
October 25, 2022
SE2040Nov04P.png
November 4, 2040
SE2058Nov16P.png
November 16, 2058
585960
SE2076Nov26P.png
November 26, 2076
SE2094Dec07P.png
December 7, 2094
Saros124 60van73 SE2112Dec19P.jpg
December 19, 2112
616263
Saros124 61van73 SE2130Dec30P.jpg
December 30, 2130
Saros124 62van73 SE2149Jan09P.jpg
January 9, 2149
Saros124 63van73 SE2167Jan21P.jpg
January 21, 2167
64
Saros124 64van73 SE2185Jan31P.jpg
January 31, 2185

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

24 eclipse events between August 28, 1802 and August 28, 1859
August 27–28June 16April 3–4January 20–21November 9
122124126128130
SE1802Aug28A.png
August 28, 1802
SE1806Jun16T.png
June 16, 1806
SE1810Apr04A.gif
April 4, 1810
SE1814Jan21A.gif
January 21, 1814
SE1817Nov09T.gif
November 9, 1817
132134136138140
SE1821Aug27A.gif
August 27, 1821
SE1825Jun16H.gif
June 16, 1825
SE1829Apr03T.gif
April 3, 1829
SE1833Jan20A.gif
January 20, 1833
SE1836Nov09T.gif
November 9, 1836
142144146148150
SE1840Aug27T.gif
August 27, 1840
SE1844Jun16P.gif
June 16, 1844
SE1848Apr03P.png
April 3, 1848
SE1852Jan21P.png
January 21, 1852
SE1855Nov09P.gif
November 9, 1855
152
SE1859Aug28P.gif
August 28, 1859

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1806Jun16T.png
June 16, 1806
(Saros 124)
SE1817May16A.gif
May 16, 1817
(Saros 125)
Saros126 37van72 SE1828Apr14H.jpg
April 14, 1828
(Saros 126)
SE1839Mar15T.gif
March 15, 1839
(Saros 127)
SE1850Feb12A.gif
February 12, 1850
(Saros 128)
SE1861Jan11A.gif
January 11, 1861
(Saros 129)
SE1871Dec12T.png
December 12, 1871
(Saros 130)
SE1882Nov10A.gif
November 10, 1882
(Saros 131)
SE1893Oct09A.gif
October 9, 1893
(Saros 132)
SE1904Sep09T.png
September 9, 1904
(Saros 133)
SE1915Aug10A.png
August 10, 1915
(Saros 134)
SE1926Jul09A.png
July 9, 1926
(Saros 135)
SE1937Jun08T.png
June 8, 1937
(Saros 136)
SE1948May09A.png
May 9, 1948
(Saros 137)
SE1959Apr08A.png
April 8, 1959
(Saros 138)
SE1970Mar07T.png
March 7, 1970
(Saros 139)
SE1981Feb04A.png
February 4, 1981
(Saros 140)
SE1992Jan04A.png
January 4, 1992
(Saros 141)
SE2002Dec04T.png
December 4, 2002
(Saros 142)
SE2013Nov03H.png
November 3, 2013
(Saros 143)
SE2024Oct02A.png
October 2, 2024
(Saros 144)
SE2035Sep02T.png
September 2, 2035
(Saros 145)
SE2046Aug02T.png
August 2, 2046
(Saros 146)
SE2057Jul01A.png
July 1, 2057
(Saros 147)
SE2068May31T.png
May 31, 2068
(Saros 148)
SE2079May01T.png
May 1, 2079
(Saros 149)
SE2090Mar31P.png
March 31, 2090
(Saros 150)
SE2101Feb28A.png
February 28, 2101
(Saros 151)
Saros152 18van70 SE2112Jan29T.jpg
January 29, 2112
(Saros 152)
Saros153 15van70 SE2122Dec28A.jpg
December 28, 2122
(Saros 153)
Saros154 13van71 SE2133Nov26A.jpg
November 26, 2133
(Saros 154)
Saros155 13van71 SE2144Oct26T.jpg
October 26, 2144
(Saros 155)
Saros156 09van69 SE2155Sep26A.jpg
September 26, 2155
(Saros 156)
SE2166Aug25A.png
August 25, 2166
(Saros 157)
Saros158 07van70 SE2177Jul25P.jpg
July 25, 2177
(Saros 158)
Saros159 04van70 SE2188Jun24P.jpg
June 24, 2188
(Saros 159)
Saros160 02van71 SE2199May24P.jpg
May 24, 2199
(Saros 160)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1806Jun16T.png
June 16, 1806
(Saros 124)
SE1835May27A.gif
May 27, 1835
(Saros 125)
SE1864May06H.gif
May 6, 1864
(Saros 126)
SE1893Apr16T.png
April 16, 1893
(Saros 127)
SE1922Mar28A.png
March 28, 1922
(Saros 128)
SE1951Mar07A.png
March 7, 1951
(Saros 129)
SE1980Feb16T.png
February 16, 1980
(Saros 130)
SE2009Jan26A.png
January 26, 2009
(Saros 131)
SE2038Jan05A.png
January 5, 2038
(Saros 132)
SE2066Dec17T.png
December 17, 2066
(Saros 133)
SE2095Nov27A.png
November 27, 2095
(Saros 134)
SE2124Nov06A.png
November 6, 2124
(Saros 135)
SE2153Oct17T.png
October 17, 2153
(Saros 136)
SE2182Sep27A.png
September 27, 2182
(Saros 137)

Notes

  1. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 22 September 2024.
  2. "An Account of 1806, June 16 eclipse from a sorrow in our heart: A life of Tecumseh" by Allan W. Eckert.
  3. History of Physical Astronomy, January 1852
  4. Blake, William (1796). "The Monthly magazine. v.22 (1806). - Full View | HathiTrust Digital Library | HathiTrust Digital Library". Monthly Magazine and Critical Register of Books. Retrieved 2017-07-04.
  5. "Total Solar Eclipse of 1806 Jun 16". EclipseWise.com. Retrieved 23 September 2024.
  6. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  7. "NASA - Catalog of Solar Eclipses of Saros 124". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 30, 2060</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 18 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 22, 2096</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 13 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, November 22 and Friday, November 23, 1984, with a magnitude of 1.0237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 5.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 9, 1929</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, May 9, 1929, with a magnitude of 1.0562. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 12, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.8 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, October 3 and Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 16, 1893</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, April 16, 1893, with a magnitude of 1.0556. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 3, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Friday, January 3 and Saturday, January 4, 1908, with a magnitude of 1.0437. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 14 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 23, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 23, 1908, with a magnitude of 1.0024. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 28, 1908</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, June 28, 1908, with a magnitude of 0.9655. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of March 28, 1922</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, March 28, 1922, with a magnitude of 0.9381. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.75 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of August 29, 1886</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 29, 1886, with a magnitude of 1.0735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 17, 1882</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, May 17, 1882, with a magnitude of 1.0200. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4.2 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 6, 1875</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, April 6, 1875, with a magnitude of 1.0547. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 26, 1824</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, June 26 and Sunday, June 27, 1824, with a magnitude of 1.0578. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of March 25, 1857</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Wednesday, March 25 and Thursday, March 26, 1857, with a magnitude of 1.0534. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of February 21, 1803</span> Total solar eclipse February 21, 1803

A total solar eclipse occurred at the Moon's ascending node of orbit on Monday, February 21, 1803, with a magnitude of 1.0492. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 18 hours before perigee, the Moon's apparent diameter was larger.

References