Solar eclipse of February 4, 1981

Last updated
Solar eclipse of February 4, 1981
SE1981Feb04A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.4838
Magnitude 0.9937
Maximum eclipse
Duration33 s (0 min 33 s)
Coordinates 44°24′S140°48′W / 44.4°S 140.8°W / -44.4; -140.8
Max. width of band25 km (16 mi)
Times (UTC)
Greatest eclipse22:09:24
References
Saros 140 (27 of 71)
Catalog # (SE5000) 9466

An annular solar eclipse occurred at the Moon's descending node of orbit between Wednesday, February 4 and Thursday, February 5, 1981, with a magnitude of 0.9937. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This annular solar eclipse was large because the Moon covered 99.4% of the Sun, with a path width of only 25 km (15.534 mi, or 82,080.997 feet). It was visible in Australia, crossing over Tasmania and southern Stewart Island of New Zealand near sunrise on February 5 (Thursday), and ended at sunset over western South America on February 4 (Wednesday). Occurring only 4 days before perigee (on February 8, 1981), the moon's apparent diameter was larger.

Contents

The moon's apparent diameter was 7 arcseconds smaller than the July 31, 1981 total solar eclipse.

Eclipse details

Observations

The Astronomical Society of Tasmania set up 18 observation sites on the northern and southern edges of the path of annularity in Tasmania to measure the diameter of the sun. However, data were obtained from only one site on the northern and one on the southern edge due to the clouds. The United States Naval Observatory also took images of the partial phase with portable video recorders in Tasmania. [1] Besides, due to the influence of the concave and convex peaks on the edge of the moon, if the moon is assumed to be a uniform sphere, the predicted times of each contact of the eclipse were slightly different from the actual times because the predictions assumed the moon to be a circular body but there are actually mountains and valleys on the lunar limb. The British Astronomical Association observed this eclipse in Tasmania and studied the methods to calculate the time of eclipses more accurately. [2]

Eclipses in 1981

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 140

Inex

Triad

Solar eclipses of 1979–1982

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipses on June 21, 1982 and December 15, 1982 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1979 to 1982
Descending node Ascending node
SarosMapGammaSarosMapGamma
120
1979 Solar eclipse, Brandon Manitoba Canada (35907221663).jpg
Totality in Brandon, MB,
Canada
February 26, 1979
SE1979Feb26T.png
Total
0.8981125 August 22, 1979
SE1979Aug22A.png
Annular
−0.9632
130 February 16, 1980
SE1980Feb16T.png
Total
0.2224135 August 10, 1980
SE1980Aug10A.png
Annular
−0.1915
140 February 4, 1981
SE1981Feb04A.png
Annular
−0.4838145 July 31, 1981
SE1981Jul31T.png
Total
0.5792
150 January 25, 1982
SE1982Jan25P.png
Partial
−1.2311155 July 20, 1982
SE1982Jul20P.png
Partial
1.2886

Saros 140

This eclipse is a part of Saros series 140, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 16, 1512. It contains total eclipses from July 21, 1656 through November 9, 1836; hybrid eclipses from November 20, 1854 through December 23, 1908; and annular eclipses from January 3, 1927 through December 7, 2485. The series ends at member 71 as a partial eclipse on June 1, 2774. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 11 at 4 minutes, 10 seconds on August 12, 1692, and the longest duration of annularity will be produced by member 53 at 7 minutes, 35 seconds on November 15, 2449. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 18–39 occur between 1801 and 2200:
181920
SE1818Oct29T.png
October 29, 1818
SE1836Nov09T.png
November 9, 1836
SE1854Nov20H.png
November 20, 1854
212223
SE1872Nov30H.png
November 30, 1872
SE1890Dec12H.png
December 12, 1890
SE1908Dec23H.png
December 23, 1908
242526
SE1927Jan03A.png
January 3, 1927
SE1945Jan14A.png
January 14, 1945
SE1963Jan25A.png
January 25, 1963
272829
SE1981Feb04A.png
February 4, 1981
SE1999Feb16A.png
February 16, 1999
SE2017Feb26A.png
February 26, 2017
303132
SE2035Mar09A.png
March 9, 2035
SE2053Mar20A.png
March 20, 2053
SE2071Mar31A.png
March 31, 2071
333435
SE2089Apr10A.png
April 10, 2089
SE2107Apr23A.png
April 23, 2107
SE2125May03A.png
May 3, 2125
363738
SE2143May14A.png
May 14, 2143
SE2161May25A.png
May 25, 2161
SE2179Jun05A.png
June 5, 2179
39
SE2197Jun15A.png
June 15, 2197

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between September 12, 1931 and July 1, 2011
September 11–12June 30–July 1April 17–19February 4–5November 22–23
114116118120122
SE1931Sep12P.png
September 12, 1931
SE1935Jun30P.png
June 30, 1935
SE1939Apr19A.png
April 19, 1939
SE1943Feb04T.png
February 4, 1943
SE1946Nov23P.png
November 23, 1946
124126128130132
SE1950Sep12T.png
September 12, 1950
SE1954Jun30T.png
June 30, 1954
SE1958Apr19A.png
April 19, 1958
SE1962Feb05T.png
February 5, 1962
SE1965Nov23A.png
November 23, 1965
134136138140142
SE1969Sep11A.png
September 11, 1969
SE1973Jun30T.png
June 30, 1973
SE1977Apr18A.png
April 18, 1977
SE1981Feb04A.png
February 4, 1981
SE1984Nov22T.png
November 22, 1984
144146148150152
SE1988Sep11A.png
September 11, 1988
SE1992Jun30T.png
June 30, 1992
SE1996Apr17P.png
April 17, 1996
SE2000Feb05P.png
February 5, 2000
SE2003Nov23T.png
November 23, 2003
154156
SE2007Sep11P.png
September 11, 2007
SE2011Jul01P.png
July 1, 2011

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1806Jun16T.png
June 16, 1806
(Saros 124)
SE1817May16A.gif
May 16, 1817
(Saros 125)
Saros126 37van72 SE1828Apr14H.jpg
April 14, 1828
(Saros 126)
SE1839Mar15T.gif
March 15, 1839
(Saros 127)
SE1850Feb12A.gif
February 12, 1850
(Saros 128)
SE1861Jan11A.gif
January 11, 1861
(Saros 129)
SE1871Dec12T.png
December 12, 1871
(Saros 130)
SE1882Nov10A.gif
November 10, 1882
(Saros 131)
SE1893Oct09A.gif
October 9, 1893
(Saros 132)
SE1904Sep09T.png
September 9, 1904
(Saros 133)
SE1915Aug10A.png
August 10, 1915
(Saros 134)
SE1926Jul09A.png
July 9, 1926
(Saros 135)
SE1937Jun08T.png
June 8, 1937
(Saros 136)
SE1948May09A.png
May 9, 1948
(Saros 137)
SE1959Apr08A.png
April 8, 1959
(Saros 138)
SE1970Mar07T.png
March 7, 1970
(Saros 139)
SE1981Feb04A.png
February 4, 1981
(Saros 140)
SE1992Jan04A.png
January 4, 1992
(Saros 141)
SE2002Dec04T.png
December 4, 2002
(Saros 142)
SE2013Nov03H.png
November 3, 2013
(Saros 143)
SE2024Oct02A.png
October 2, 2024
(Saros 144)
SE2035Sep02T.png
September 2, 2035
(Saros 145)
SE2046Aug02T.png
August 2, 2046
(Saros 146)
SE2057Jul01A.png
July 1, 2057
(Saros 147)
SE2068May31T.png
May 31, 2068
(Saros 148)
SE2079May01T.png
May 1, 2079
(Saros 149)
SE2090Mar31P.png
March 31, 2090
(Saros 150)
SE2101Feb28A.png
February 28, 2101
(Saros 151)
Saros152 18van70 SE2112Jan29T.jpg
January 29, 2112
(Saros 152)
Saros153 15van70 SE2122Dec28A.jpg
December 28, 2122
(Saros 153)
Saros154 13van71 SE2133Nov26A.jpg
November 26, 2133
(Saros 154)
Saros155 13van71 SE2144Oct26T.jpg
October 26, 2144
(Saros 155)
Saros156 09van69 SE2155Sep26A.jpg
September 26, 2155
(Saros 156)
SE2166Aug25A.png
August 25, 2166
(Saros 157)
Saros158 07van70 SE2177Jul25P.jpg
July 25, 2177
(Saros 158)
Saros159 04van70 SE2188Jun24P.jpg
June 24, 2188
(Saros 159)
Saros160 02van71 SE2199May24P.jpg
May 24, 2199
(Saros 160)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1807Jun06H.gif
June 6, 1807
(Saros 134)
SE1836May15A.gif
May 15, 1836
(Saros 135)
SE1865Apr25T.png
April 25, 1865
(Saros 136)
SE1894Apr06H.gif
April 6, 1894
(Saros 137)
SE1923Mar17A.png
March 17, 1923
(Saros 138)
SE1952Feb25T.png
February 25, 1952
(Saros 139)
SE1981Feb04A.png
February 4, 1981
(Saros 140)
SE2010Jan15A.png
January 15, 2010
(Saros 141)
SE2038Dec26T.png
December 26, 2038
(Saros 142)
SE2067Dec06H.png
December 6, 2067
(Saros 143)
SE2096Nov15A.png
November 15, 2096
(Saros 144)
SE2125Oct26T.png
October 26, 2125
(Saros 145)
SE2154Oct07T.png
October 7, 2154
(Saros 146)
Saros147 32van80 SE2183Sep16A.jpg
September 16, 2183
(Saros 147)

Notes

  1. Fiala, A. D., Herald, D., & Dunham, D. W. (March 1981). "Annular Solar Eclipse Observed for Solar Radius Determination". Bulletin of the American Astronomical Society. 13: 552. Archived from the original on 29 August 2019.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. David Herald (October 1983). "Correcting Predictions of Solar Eclipse Contact Times for the Effects of Lunar Limb Irregularities". Journal of the British Astronomical Association. 93 (6): 241–246. Archived from the original on 29 August 2019.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 140". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 7, 2008</span>

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, February 7, 2008, with a magnitude of 0.965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 7 days after apogee and 6.9 days before perigee, the Moon's apparent diameter was near the average diameter.

<span class="mw-page-title-main">Solar eclipse of February 16, 1999</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, February 16, 1999, with a magnitude of 0.9928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the southern Indian Ocean including the Prince Edward Islands, South Africa, and Australia.

<span class="mw-page-title-main">Solar eclipse of February 26, 2017</span> 2017 annular solar eclipse in South America and Africa

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, February 26, 2017, with a magnitude of 0.9922. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 4.7 days before perigee, the Moon's apparent diameter was larger. The moon's apparent diameter was just over 0.7% smaller than the Sun's.

<span class="mw-page-title-main">Solar eclipse of September 9, 1904</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, September 9, 1904, with a magnitude of 1.0709. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from German New Guinea on September 10 and Chile on September 9.

<span class="mw-page-title-main">Solar eclipse of January 26, 1990</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, January 26, 1990, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 24, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, December 24, 1973, with a magnitude of 0.9174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from southern Mexico, southwestern Nicaragua, Costa Rica including the capital city San José, Panama, Colombia including the capital city Bogotá, southern Venezuela, Brazil, southern Guyana, southern Dutch Guiana, southern French Guiana, Portuguese Cape Verde including the capital city Praia, Mauritania including the capital city Nouakchott, Spanish Sahara, Mali, and Algeria.

<span class="mw-page-title-main">Solar eclipse of December 14, 1955</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, December 14, 1955, with a magnitude of 0.9176. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 11, 1988</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 11, 1988, with a magnitude of 0.9377. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in southeastern Somalia, the Indian Ocean and Macquarie Island of Australia.

<span class="mw-page-title-main">Solar eclipse of April 18, 1977</span> Annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, April 18, 1977, with a magnitude of 0.9449. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in South West Africa, Angola, Zambia, southeastern Zaire, northern Malawi, Tanzania, Seychelles and the whole British Indian Ocean Territory.

<span class="mw-page-title-main">Solar eclipse of January 25, 1963</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, January 25, 1963, with a magnitude of 0.9951. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity crossed Chile, Argentina, South Africa, southern Basutoland and Malagasy Republic. Occurring 3.7 days before perigee, the Moon's apparent diameter was larger. The moon was 374,860 km from the Earth.

<span class="mw-page-title-main">Solar eclipse of July 20, 1963</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, July 20, 1963, with a magnitude of 1.0224. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is at least the same size as the Sun's or larger, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with a partial solar eclipse visible over the surrounding region thousands of kilometres wide. Totality was visible from Hokkaido in Japan and Kuril Islands in Soviet Union on July 21, and Alaska, and Maine in the United States and also Canada on July 20. Astronomer Charles H. Smiley observed the eclipse from a U.S. Air Force F-104D Starfighter supersonic aircraft that was "racing the Moon's shadow" at 1,300 mph (2,100 km/h) extending the duration of totality to 4 minutes 3 seconds. The Moon was 375,819 km from the Earth.

<span class="mw-page-title-main">Solar eclipse of June 8, 1956</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Friday, June 8 and Saturday, June 9, 1956, with a magnitude of 1.0581. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It began near sunrise over New Zealand on June 9 (Saturday), and ended west of South America on June 8 (Friday).

<span class="mw-page-title-main">Solar eclipse of August 20, 1952</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 20, 1952, with a magnitude of 0.942. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru including the capital city Lima, northeastern Chile, Bolivia including the constitutional capital Sucre and seat of government La Paz, Argentina, Paraguay, southern Brazil and Uruguay.

<span class="mw-page-title-main">Solar eclipse of November 15, 2077</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 15, 2077, with a magnitude of 0.9371. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partially obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross North America and South America. This will be the 47th solar eclipse of Saros cycle 134. A small annular eclipse will cover only 93.71% of the Sun in a very broad path, 262 km wide at maximum, and will last 7 minutes and 54 seconds. Occurring only 4 days after apogee, the Moon's apparent diameter is smaller.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 1, 2079</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, May 1, 2079, with a magnitude of 1.0512. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The eclipse will be visible in Greenland, parts of eastern Canada and parts of the northeastern United States.

<span class="mw-page-title-main">Solar eclipse of November 4, 2078</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, November 4, 2078, with a magnitude of 0.9255. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross the Pacific Ocean, South America, and the Atlantic Ocean.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 10, 1934</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 14, 1945</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, January 14, 1945, with a magnitude of 0.997. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Eastern Cape in South Africa, and northeastern Tasmania Island and Furneaux Group in Australia.

References