Solar eclipse of October 11, 1931

Last updated
Solar eclipse of October 11, 1931
SE1931Oct11P.png
Map
Type of eclipse
NaturePartial
Gamma −1.0607
Magnitude 0.9005
Maximum eclipse
Coordinates 61°12′S119°30′W / 61.2°S 119.5°W / -61.2; -119.5
Times (UTC)
Greatest eclipse12:55:40
References
Saros 152 (8 of 70)
Catalog # (SE5000) 9354

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, October 11, 1931, [1] with a magnitude of 0.9005. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse was visible for parts of southern and central South America and Antarctica.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

October 11, 1931 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1931 October 11 at 11:01:29.3 UTC
Greatest Eclipse1931 October 11 at 12:55:39.8 UTC
Ecliptic Conjunction1931 October 11 at 13:06:15.3 UTC
Equatorial Conjunction1931 October 11 at 13:53:48.2 UTC
Last Penumbral External Contact1931 October 11 at 14:49:27.7 UTC
October 11, 1931 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.90054
Eclipse Obscuration0.88440
Gamma−1.06069
Sun Right Ascension13h03m34.8s
Sun Declination-06°46'31.5"
Sun Semi-Diameter16'01.4"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension13h01m31.6s
Moon Declination-07°43'48.4"
Moon Semi-Diameter16'43.0"
Moon Equatorial Horizontal Parallax1°01'21.2"
ΔT23.9 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of September–October 1931
September 12
Descending node (new moon)
September 26
Ascending node (full moon)
October 11
Descending node (new moon)
SE1931Sep12P.png Lunar eclipse chart close-1931Sep26.png SE1931Oct11P.png
Partial solar eclipse
Solar Saros 114
Total lunar eclipse
Lunar Saros 126
Partial solar eclipse
Solar Saros 152

Eclipses in 1931

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 152

Inex

Triad

Solar eclipses of 1928–1931

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on June 17, 1928 occurs in the previous lunar year eclipse set, and the partial solar eclipse on September 12, 1931 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1928 to 1931
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 May 19, 1928
SE1928May19T.png
Total (non-central)
1.0048122 November 12, 1928
SE1928Nov12P.png
Partial
1.0861
127 May 9, 1929
SE1929May09T.png
Total
−0.2887132 November 1, 1929
SE1929Nov01A.png
Annular
0.3514
137 April 28, 1930
SE1930Apr28H.png
Hybrid
0.473142 October 21, 1930
SE1930Oct21T.png
Total
−0.3804
147 April 18, 1931
SE1931Apr18P.png
Partial
1.2643152 October 11, 1931
SE1931Oct11P.png
Partial
−1.0607

Saros 152

This eclipse is a part of Saros series 152, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 26, 1805. It contains total eclipses from November 2, 1967 through September 14, 2490; hybrid eclipses from September 26, 2508 through October 17, 2544; and annular eclipses from October 29, 2562 through June 16, 2941. The series ends at member 70 as a partial eclipse on August 20, 3049. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 30 at 5 minutes, 16 seconds on June 9, 2328, and the longest duration of annularity will be produced by member 53 at 5 minutes, 20 seconds on February 16, 2743. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 1–22 occur between 1805 and 2200:
123
SE1805Jul26Pb.gif
July 26, 1805
SE1823Aug06P.gif
August 6, 1823
SE1841Aug16P.gif
August 16, 1841
456
SE1859Aug28P.gif
August 28, 1859
SE1877Sep07P.gif
September 7, 1877
SE1895Sep18P.gif
September 18, 1895
789
SE1913Sep30P.png
September 30, 1913
SE1931Oct11P.png
October 11, 1931
SE1949Oct21P.png
October 21, 1949
101112
SE1967Nov02T.png
November 2, 1967
SE1985Nov12T.png
November 12, 1985
SE2003Nov23T.png
November 23, 2003
131415
SE2021Dec04T.png
December 4, 2021
SE2039Dec15T.png
December 15, 2039
SE2057Dec26T.png
December 26, 2057
161718
SE2076Jan06T.png
January 6, 2076
SE2094Jan16T.png
January 16, 2094
Saros152 18van70 SE2112Jan29T.jpg
January 29, 2112
192021
Saros152 19van70 SE2130Feb08T.jpg
February 8, 2130
Saros152 20van70 SE2148Feb19T.jpg
February 19, 2148
Saros152 21van70 SE2166Mar02T.jpg
March 2, 2166
22
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 5, 1848 and July 30, 1935
March 5–6December 22–24October 9–11July 29–30May 17–18
108110112114116
SE1848Mar05P.gif
March 5, 1848
SE1859Jul29P.gif
July 29, 1859
SE1863May17P.gif
May 17, 1863
118120122124126
SE1867Mar06A.gif
March 6, 1867
SE1870Dec22T.png
December 22, 1870
SE1874Oct10An.gif
October 10, 1874
SE1878Jul29T.png
July 29, 1878
SE1882May17T.png
May 17, 1882
128130132134136
SE1886Mar05A.gif
March 5, 1886
SE1889Dec22T.png
December 22, 1889
SE1893Oct09A.png
October 9, 1893
SE1897Jul29A.png
July 29, 1897
SE1901May18T.png
May 18, 1901
138140142144146
SE1905Mar06A.png
March 6, 1905
SE1908Dec23H.png
December 23, 1908
SE1912Oct10T.png
October 10, 1912
SE1916Jul30A.png
July 30, 1916
SE1920May18P.png
May 18, 1920
148150152154
SE1924Mar05P.png
March 5, 1924
SE1927Dec24P.png
December 24, 1927
SE1931Oct11P.png
October 11, 1931
SE1935Jul30P.png
July 30, 1935

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1964
SE1811Sep17A.gif
September 17, 1811
(Saros 141)
SE1822Aug16T.gif
August 16, 1822
(Saros 142)
SE1833Jul17T.gif
July 17, 1833
(Saros 143)
SE1844Jun16P.gif
June 16, 1844
(Saros 144)
SE1855May16P.gif
May 16, 1855
(Saros 145)
SE1866Apr15P.gif
April 15, 1866
(Saros 146)
SE1877Mar15P.gif
March 15, 1877
(Saros 147)
SE1888Feb11P.gif
February 11, 1888
(Saros 148)
SE1899Jan11P.gif
January 11, 1899
(Saros 149)
SE1909Dec12P.png
December 12, 1909
(Saros 150)
SE1920Nov10P.png
November 10, 1920
(Saros 151)
SE1931Oct11P.png
October 11, 1931
(Saros 152)
SE1942Sep10P.png
September 10, 1942
(Saros 153)
SE1953Aug09P.png
August 9, 1953
(Saros 154)
SE1964Jul09P.png
July 9, 1964
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1815Dec30P.gif
December 30, 1815
(Saros 148)
SE1844Dec09P.gif
December 9, 1844
(Saros 149)
SE1873Nov20P.png
November 20, 1873
(Saros 150)
SE1902Oct31P.png
October 31, 1902
(Saros 151)
SE1931Oct11P.png
October 11, 1931
(Saros 152)
SE1960Sep20P.png
September 20, 1960
(Saros 153)
SE1989Aug31P.png
August 31, 1989
(Saros 154)
SE2018Aug11P.png
August 11, 2018
(Saros 155)
SE2047Jul22P.png
July 22, 2047
(Saros 156)
SE2076Jul01P.png
July 1, 2076
(Saros 157)
Saros158 03van70 SE2105Jun12P.jpg
June 12, 2105
(Saros 158)
Saros159 01van70 SE2134May23P.jpg
May 23, 2134
(Saros 159)
Saros161 02van72 SE2192Apr12P.jpg
April 12, 2192
(Saros 161)

Notes

  1. "October 11, 1931 Partial Solar Eclipse". timeanddate. Retrieved 3 August 2024.
  2. "Partial Solar Eclipse of 1931 Oct 11". EclipseWise.com. Retrieved 3 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 152". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 20, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 20, 1982, with a magnitude of 0.4643. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 13, 1974</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Friday, December 13, 1974, with a magnitude of 0.8266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 22, 1971</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 22, 1971, with a magnitude of 0.0689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This was the 70th and final solar eclipse from Solar Saros 116.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 2, 1956</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Sunday, December 2, 1956, with a magnitude of 0.8047. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 11, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, July 11, 1953, with a magnitude of 0.2015. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 14, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, February 14, 1953, with a magnitude of 0.7596. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 4, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 4, 2040, with a magnitude of 0.8074. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 9, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 2, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 6, 2086</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086, with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 21, 1949</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, October 21, 1949, with a magnitude of 0.9638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 10, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 10, 1942, with a magnitude of 0.523. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References