Solar eclipse of March 18, 1969

Last updated
Solar eclipse of March 18, 1969
SE1969Mar18A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.2704
Magnitude 0.9954
Maximum eclipse
Duration26 s (0 min 26 s)
Coordinates 14°48′S116°18′E / 14.8°S 116.3°E / -14.8; 116.3
Max. width of band16 km (9.9 mi)
Times (UTC)
Greatest eclipse4:54:57
References
Saros 129 (49 of 80)
Catalog # (SE5000) 9440

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, March 18, 1969, [1] with a magnitude of 0.9954. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 5.1 days after perigee (on March 13, 1969, at 2:50 UTC) and 7.7 days before apogee (on March 25, 1969, at 19:30 UTC). [2]

Contents

Annularity was visible from part of Indonesia, and two atolls (Faraulep and Gaferut) in the Trust Territory of the Pacific Islands which belongs to the Federated States of Micronesia now. A partial eclipse was visible for parts of Madagascar, Antarctica, Australia, Southeast Asia, East Asia, and northern Oceania.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

March 18, 1969 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1969 March 18 at 02:07:06.0 UTC
First Umbral External Contact1969 March 18 at 03:08:38.9 UTC
First Central Line1969 March 18 at 03:09:16.7 UTC
Greatest Duration1969 March 18 at 03:09:16.7 UTC
First Umbral Internal Contact1969 March 18 at 03:09:54.5 UTC
First Penumbral Internal Contact1969 March 18 at 04:16:02.5 UTC
Equatorial Conjunction1969 March 18 at 04:38:24.3 UTC
Ecliptic Conjunction1969 March 18 at 04:51:59.7 UTC
Greatest Eclipse1969 March 18 at 04:54:57.2 UTC
Last Penumbral Internal Contact1969 March 18 at 05:34:13.5 UTC
Last Umbral Internal Contact1969 March 18 at 06:40:08.1 UTC
Last Central Line1969 March 18 at 06:40:48.6 UTC
Last Umbral External Contact1969 March 18 at 06:41:29.2 UTC
Last Penumbral External Contact1969 March 18 at 07:43:01.1 UTC
March 18, 1969 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.99545
Eclipse Obscuration0.99092
Gamma−0.27037
Sun Right Ascension23h50m32.4s
Sun Declination-01°01'31.8"
Sun Semi-Diameter16'04.0"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension23h51m02.7s
Moon Declination-01°15'08.8"
Moon Semi-Diameter15'44.8"
Moon Equatorial Horizontal Parallax0°57'47.6"
ΔT39.4 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of March–April 1969
March 18
Ascending node (new moon)
April 2
Descending node (full moon)
SE1969Mar18A.png Lunar eclipse chart close-1969Apr02.png
Annular solar eclipse
Solar Saros 129
Penumbral lunar eclipse
Lunar Saros 141

Eclipses in 1969

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 129

Inex

Triad

Solar eclipses of 1968–1971

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipse on July 22, 1971 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1968 to 1971
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 March 28, 2968
SE1968Mar28P.png
Partial
−1.037124 September 22, 1968
SE1968Sep22T.png
Total
0.9451
129 March 18, 1969
SE1969Mar18A.png
Annular
−0.2704134 September 11, 1969
SE1969Sep11A.png
Annular
0.2201
139
C72pct (4321372614).jpg
Totality in Williamston, NC
USA
March 7, 1970
SE1970Mar07T.png
Total
0.4473144 August 31, 1970
SE1970Aug31A.png
Annular
−0.5364
149 February 25, 1971
SE1971Feb25P.png
Partial
1.1188154 August 20, 1971
SE1971Aug20P.png
Partial
−1.2659

Saros 129

This eclipse is a part of Saros series 129, repeating every 18 years, 11 days, and containing 80 events. The series started with a partial solar eclipse on October 3, 1103. It contains annular eclipses from May 6, 1464 through March 18, 1969; hybrid eclipses from March 29, 1987 through April 20, 2023; and total eclipses from April 30, 2041 through July 26, 2185. The series ends at member 80 as a partial eclipse on February 21, 2528. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 34 at 5 minutes, 10 seconds on October 4, 1698, and the longest duration of totality will be produced by member 58 at 3 minutes, 43 seconds on June 25, 2131. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Series members 40–61 occur between 1801 and 2200:
404142
SE1806Dec10A.gif
December 10, 1806
SE1824Dec20Am.gif
December 20, 1824
SE1842Dec31A.gif
December 31, 1842
434445
SE1861Jan11A.gif
January 11, 1861
SE1879Jan22A.gif
January 22, 1879
SE1897Feb01A.gif
February 1, 1897
464748
SE1915Feb14A.png
February 14, 1915
SE1933Feb24A.png
February 24, 1933
SE1951Mar07A.png
March 7, 1951
495051
SE1969Mar18A.png
March 18, 1969
SE1987Mar29H.png
March 29, 1987
SE2005Apr08H.png
April 8, 2005
525354
SE2023Apr20H.png
April 20, 2023
SE2041Apr30T.png
April 30, 2041
SE2059May11T.png
May 11, 2059
555657
SE2077May22T.png
May 22, 2077
SE2095Jun02T.png
June 2, 2095
Saros129 57van80 SE2113Jun13T.jpg
June 13, 2113
585960
Saros129 58van80 SE2131Jun25T.jpg
June 25, 2131
Saros129 59van80 SE2149Jul05T.jpg
July 5, 2149
Saros129 60van80 SE2167Jul16T.jpg
July 16, 2167
61
Saros129 61van80 SE2185Jul26T.jpg
July 26, 2185

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between January 5, 1935 and August 11, 2018
January 4–5October 23–24August 10–12May 30–31March 18–19
111113115117119
SE1935Jan05P.png
January 5, 1935
SE1942Aug12P.png
August 12, 1942
SE1946May30P.png
May 30, 1946
SE1950Mar18A.png
March 18, 1950
121123125127129
SE1954Jan05A.png
January 5, 1954
SE1957Oct23T.png
October 23, 1957
SE1961Aug11A.png
August 11, 1961
SE1965May30T.png
May 30, 1965
SE1969Mar18A.png
March 18, 1969
131133135137139
SE1973Jan04A.png
January 4, 1973
SE1976Oct23T.png
October 23, 1976
SE1980Aug10A.png
August 10, 1980
SE1984May30A.png
May 30, 1984
SE1988Mar18T.png
March 18, 1988
141143145147149
SE1992Jan04A.png
January 4, 1992
SE1995Oct24T.png
October 24, 1995
SE1999Aug11T.png
August 11, 1999
SE2003May31A.png
May 31, 2003
SE2007Mar19P.png
March 19, 2007
151153155
SE2011Jan04P.png
January 4, 2011
SE2014Oct23P.png
October 23, 2014
SE2018Aug11P.png
August 11, 2018

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Jun26P.gif
June 26, 1805
(Saros 114)
SE1816May27A.gif
May 27, 1816
(Saros 115)
SE1827Apr26A.gif
April 26, 1827
(Saros 116)
SE1838Mar25T.gif
March 25, 1838
(Saros 117)
SE1849Feb23A.gif
February 23, 1849
(Saros 118)
SE1860Jan23A.png
January 23, 1860
(Saros 119)
SE1870Dec22T.png
December 22, 1870
(Saros 120)
SE1881Nov21A.gif
November 21, 1881
(Saros 121)
SE1892Oct20P.gif
October 20, 1892
(Saros 122)
SE1903Sep21T.png
September 21, 1903
(Saros 123)
SE1914Aug21T.png
August 21, 1914
(Saros 124)
SE1925Jul20A.png
July 20, 1925
(Saros 125)
SE1936Jun19T.png
June 19, 1936
(Saros 126)
SE1947May20T.png
May 20, 1947
(Saros 127)
SE1958Apr19A.png
April 19, 1958
(Saros 128)
SE1969Mar18A.png
March 18, 1969
(Saros 129)
SE1980Feb16T.png
February 16, 1980
(Saros 130)
SE1991Jan15A.png
January 15, 1991
(Saros 131)
SE2001Dec14A.png
December 14, 2001
(Saros 132)
SE2012Nov13T.png
November 13, 2012
(Saros 133)
SE2023Oct14A.png
October 14, 2023
(Saros 134)
SE2034Sep12A.png
September 12, 2034
(Saros 135)
SE2045Aug12T.png
August 12, 2045
(Saros 136)
SE2056Jul12A.png
July 12, 2056
(Saros 137)
SE2067Jun11A.png
June 11, 2067
(Saros 138)
SE2078May11T.png
May 11, 2078
(Saros 139)
SE2089Apr10A.png
April 10, 2089
(Saros 140)
SE2100Mar10A.png
March 10, 2100
(Saros 141)
SE2111Feb08T.png
February 8, 2111
(Saros 142)
SE2122Jan08A.png
January 8, 2122
(Saros 143)
SE2132Dec07A.png
December 7, 2132
(Saros 144)
SE2143Nov07T.png
November 7, 2143
(Saros 145)
SE2154Oct07T.png
October 7, 2154
(Saros 146)
Saros147 31van80 SE2165Sep05A.jpg
September 5, 2165
(Saros 147)
Saros148 30van75 SE2176Aug04T.jpg
August 4, 2176
(Saros 148)
Saros149 30van71 SE2187Jul06T.jpg
July 6, 2187
(Saros 149)
Saros150 27van71 SE2198Jun04A.jpg
June 4, 2198
(Saros 150)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1824Jun26T.png
June 26, 1824
(Saros 124)
SE1853Jun06A.gif
June 6, 1853
(Saros 125)
SE1882May17T.png
May 17, 1882
(Saros 126)
SE1911Apr28T.png
April 28, 1911
(Saros 127)
SE1940Apr07A.png
April 7, 1940
(Saros 128)
SE1969Mar18A.png
March 18, 1969
(Saros 129)
SE1998Feb26T.png
February 26, 1998
(Saros 130)
SE2027Feb06A.png
February 6, 2027
(Saros 131)
SE2056Jan16A.png
January 16, 2056
(Saros 132)
SE2084Dec27T.png
December 27, 2084
(Saros 133)
SE2113Dec08A.png
December 8, 2113
(Saros 134)
SE2142Nov17A.png
November 17, 2142
(Saros 135)
SE2171Oct29T.png
October 29, 2171
(Saros 136)
SE2200Oct09A.png
October 9, 2200
(Saros 137)

Notes

  1. "March 18, 1969 Annular Solar Eclipse". timeanddate. Retrieved 8 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 8 August 2024.
  3. "Annular Solar Eclipse of 1969 Mar 18". EclipseWise.com. Retrieved 8 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 129". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 30, 1984</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, May 30, 1984, with a magnitude of 0.998. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Mexico, the United States, Azores Islands, Morocco and Algeria. It was the first annular solar eclipse visible in the US in 33 years. The Moon's apparent diameter was near the average diameter because it occurred 6.7 days after apogee and 7.8 days before perigee.

<span class="mw-page-title-main">Solar eclipse of March 29, 1987</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, March 29, 1987, with a magnitude of 1.0013. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. The eclipse lasted a maximum of only 7.57 seconds. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Totality of this eclipse was not visible on any land, while annularity was visible in southern Argentina, Gabon, Equatorial Guinea, Cameroon, Central African Republic, Sudan, Ethiopia, Djibouti and Somaliland.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 6, 2027</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, February 6, 2027, with a magnitude of 0.9281. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 21, 2031</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, May 21, 2031, with a magnitude of 0.9589. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 3.8 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of July 2, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 11, 1969</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, September 11, 1969, with a magnitude of 0.969. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.2 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of July 12, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2060</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 10, 2100</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.

<span class="mw-page-title-main">Solar eclipse of November 15, 2096</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 7, 2092</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, February 7, 2092, with a magnitude of 0.984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). The Moon's apparent diameter was near the average diameter because it occurred 6.1 days after perigee and 7.25 days before apogee.

References