Total eclipse | |||||||||||||||||
Date | March 3, 1942 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gamma | −0.1545 | ||||||||||||||||
Magnitude | 1.5612 | ||||||||||||||||
Saros cycle | 122 (52 of 75) | ||||||||||||||||
Totality | 95 minutes, 54 seconds | ||||||||||||||||
Partiality | 219 minutes, 40 seconds | ||||||||||||||||
Penumbral | 344 minutes, 18 seconds | ||||||||||||||||
| |||||||||||||||||
A total lunar eclipse occurred at the Moon's ascending node of orbit on Tuesday, March 3, 1942, [1] with an umbral magnitude of 1.5612. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 5.5 days before perigee (on March 8, 1942, at 11:50 UTC), the Moon's apparent diameter was larger. [2]
The eclipse was completely visible over eastern South America, Africa, Europe, and the Middle East, seen rising over North America and west and central South America and setting over much of Asia and western Australia. [3]
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse. [4]
Parameter | Value |
---|---|
Penumbral Magnitude | 2.58789 |
Umbral Magnitude | 1.56118 |
Gamma | −0.15453 |
Sun Right Ascension | 22h52m50.5s |
Sun Declination | -07°08'24.4" |
Sun Semi-Diameter | 16'08.0" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 10h52m40.2s |
Moon Declination | +06°59'52.2" |
Moon Semi-Diameter | 15'42.8" |
Moon Equatorial Horizontal Parallax | 0°57'40.1" |
ΔT | 25.4 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
March 3 Ascending node (full moon) | March 16 Descending node (new moon) |
---|---|
Total lunar eclipse Lunar Saros 122 | Partial solar eclipse Solar Saros 148 |
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [5]
The penumbral lunar eclipses on April 22, 1940 and October 16, 1940 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on July 6, 1944 and December 29, 1944 occur in the next lunar year eclipse set.
Lunar eclipse series sets from 1940 to 1944 | ||||||||
---|---|---|---|---|---|---|---|---|
Ascending node | Descending node | |||||||
Saros | Date Viewing | Type Chart | Gamma | Saros | Date Viewing | Type Chart | Gamma | |
102 | 1940 Mar 23 | Penumbral | −1.5034 | 107 | ||||
112 | 1941 Mar 13 | Partial | −0.8437 | 117 | 1941 Sep 05 | Partial | 0.9747 | |
122 | 1942 Mar 03 | Total | −0.1545 | 127 | 1942 Aug 26 | Total | 0.1818 | |
132 | 1943 Feb 20 | Partial | 0.5752 | 137 | 1943 Aug 15 | Partial | −0.5534 | |
142 | 1944 Feb 09 | Penumbral | 1.2698 | 147 | 1944 Aug 04 | Penumbral | −1.2843 |
This eclipse is a part of Saros series 122, repeating every 18 years, 11 days, and containing 74 events. The series started with a penumbral lunar eclipse on August 14, 1022. It contains partial eclipses from April 10, 1419 through June 24, 1545; total eclipses from July 5, 1563 through May 6, 2050; and a second set of partial eclipses from May 17, 2068 through July 21, 2176. The series ends at member 74 as a penumbral eclipse on October 29, 2338.
The longest duration of totality was produced by member 39 at 100 minutes, 5 seconds on October 11, 1707. All eclipses in this series occur at the Moon’s ascending node of orbit. [6]
Greatest | First | |||
---|---|---|---|---|
The greatest eclipse of the series occurred on 1707 Oct 11, lasting 100 minutes, 5 seconds. [7] | Penumbral | Partial | Total | Central |
1022 Aug 14 | 1419 Apr 10 | 1563 Jul 05 | 1617 Aug 16 | |
Last | ||||
Central | Total | Partial | Penumbral | |
1996 Apr 04 | 2050 May 06 | 2176 Jul 21 | 2338 Oct 29 |
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Series members 45–66 occur between 1801 and 2200: | |||||
---|---|---|---|---|---|
45 | 46 | 47 | |||
1815 Dec 16 | 1833 Dec 26 | 1852 Jan 07 | |||
48 | 49 | 50 | |||
1870 Jan 17 | 1888 Jan 28 | 1906 Feb 09 | |||
51 | 52 | 53 | |||
1924 Feb 20 | 1942 Mar 03 | 1960 Mar 13 | |||
54 | 55 | 56 | |||
1978 Mar 24 | 1996 Apr 04 | 2014 Apr 15 | |||
57 | 58 | 59 | |||
2032 Apr 25 | 2050 May 06 | 2068 May 17 | |||
60 | 61 | 62 | |||
2086 May 28 | 2104 Jun 08 | 2122 Jun 20 | |||
63 | 64 | 65 | |||
2140 Jun 30 | 2158 Jul 11 | 2176 Jul 21 | |||
66 | |||||
2194 Aug 02 | |||||
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). [8] This lunar eclipse is related to two total solar eclipses of Solar Saros 129.
February 24, 1933 | March 7, 1951 |
---|---|
A penumbral lunar eclipse occurred at the Moon’s descending node of orbit on Tuesday, March 14, 2006, with an umbral magnitude of −0.0584. It was a relatively rare total penumbral lunar eclipse, with the Moon passing entirely within the penumbral shadow without entering the darker umbral shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 2.2 days after apogee, the Moon's apparent diameter was smaller.
A total lunar eclipse occurred at the Moon’s ascending node of orbit on Friday, January 21, 2000, with an umbral magnitude of 1.3246. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.5 days after perigee, the Moon's apparent diameter was larger.
A total lunar eclipse occurred at the Moon’s ascending node of orbit on Thursday, April 4, 1996, with an umbral magnitude of 1.3795. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. The Moon's apparent diameter was near the average diameter because it occurred 6.9 days after apogee and 7.2 days before perigee.
A total lunar eclipse occurred at the Moon’s ascending node of orbit on Friday, June 4, 1993, with an umbral magnitude of 1.5617. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 4.1 days after perigee, the Moon's apparent diameter was larger.
A total lunar eclipse occurred at the Moon’s ascending node of orbit on Friday, March 24, 1978, with an umbral magnitude of 1.4518. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. The Moon's apparent diameter was near the average diameter because it occurred 7.1 days after apogee and 6.6 days before perigee.
A total lunar eclipse occurred at the Moon’s descending node of orbit on Wednesday, February 10, 1971, with an umbral magnitude of 1.3082. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.8 days before apogee, the Moon's apparent diameter was smaller.
A partial lunar eclipse occurred at the Moon’s descending node of orbit on Saturday, December 21, 1991, with an umbral magnitude of 0.0876. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring only about 23 hours before perigee, the Moon's apparent diameter was larger.
A penumbral lunar eclipse occurred at the Moon’s descending node of orbit on Thursday, March 3, 1988, with an umbral magnitude of −0.0016. It was a relatively rare total penumbral lunar eclipse, with the Moon passing entirely within the penumbral shadow without entering the darker umbral shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 2.2 days after apogee, the Moon's apparent diameter was smaller.
A total lunar eclipse will occur at the Moon’s ascending node of orbit on Sunday, April 25, 2032, with an umbral magnitude of 1.1925. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. The Moon's apparent diameter will be near the average diameter because it will occur 6.7 days after apogee and 8.1 days before perigee.
A total lunar eclipse will occur at the Moon’s ascending node of orbit on Monday, February 11, 2036, with an umbral magnitude of 1.3007. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.2 days after perigee, the Moon's apparent diameter will be larger.
A partial lunar eclipse occurred at the Moon’s descending node of orbit on Monday, December 10, 1973, with an umbral magnitude of 0.1007. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring only about 21 hours before perigee, the Moon's apparent diameter was larger.
A penumbral lunar eclipse occurred at the Moon’s ascending node of orbit on Wednesday, January 9, 1963, with an umbral magnitude of −0.0184. It was a relatively rare total penumbral lunar eclipse, with the Moon passing entirely within the penumbral shadow without entering the darker umbral shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 5.6 days after perigee, the Moon's apparent diameter was larger.
A total lunar eclipse occurred at the Moon’s ascending node of orbit on Sunday, March 13, 1960, with an umbral magnitude of 1.5145. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 5.9 days before perigee, the Moon's apparent diameter was larger.
A total lunar eclipse occurred at the Moon’s descending node of orbit on Monday, September 5, 1960, with an umbral magnitude of 1.4239. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.5 days after perigee, the Moon's apparent diameter was larger.
A total lunar eclipse occurred at the Moon’s descending node of orbit on Sunday, November 18, 1956, with an umbral magnitude of 1.3172. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 3.4 days before perigee, the Moon's apparent diameter was larger.
A total lunar eclipse occurred at the Moon’s descending node of orbit on Thursday, January 29, 1953, with an umbral magnitude of 1.3314. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.5 days before apogee, the Moon's apparent diameter was smaller.
A total lunar eclipse occurred at the Moon’s ascending node of orbit on Monday, September 15, 1913, with an umbral magnitude of 1.4304. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring only about 30 minutes after apogee, the Moon's apparent diameter was smaller.
A total lunar eclipse will occur at the Moon’s ascending node of orbit on Friday, May 6, 2050, with an umbral magnitude of 1.0779. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 6.5 days after apogee, the Moon's apparent diameter will be smaller.
A penumbral lunar eclipse will occur at the Moon’s descending node of orbit on Friday, August 29, 2053, with an umbral magnitude of −0.0319. It will be a relatively rare total penumbral lunar eclipse, with the Moon passing entirely within the penumbral shadow without entering the darker umbral shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 4.7 days after apogee, the Moon's apparent diameter will be smaller.
A total lunar eclipse will occur at the Moon’s descending node of orbit on Wednesday, May 30, 2170, with an umbral magnitude of 1.7488. It will be a central lunar eclipse, in which part of the Moon will pass through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 3.6 days after perigee, the Moon's apparent diameter will be larger.