Inflation-restriction exact sequence

Last updated

In mathematics, the inflation-restriction exact sequence is an exact sequence occurring in group cohomology and is a special case of the five-term exact sequence arising from the study of spectral sequences.

Specifically, let G be a group, N a normal subgroup, and A an abelian group which is equipped with an action of G, i.e., a homomorphism from G to the automorphism group of A. The quotient group G/N acts on

AN = { aA : na = a for all nN}.

Then the inflation-restriction exact sequence is:

0 H 1(G/N, AN) H 1(G, A) H 1(N, A)G/NH 2(G/N, AN) H 2(G, A)

In this sequence, there are maps

The inflation and restriction are defined for general n:

The transgression is defined for general n

only if Hi(N, A)G/N = 0 for in  1. [1]

The sequence for general n may be deduced from the case n = 1 by dimension-shifting or from the Lyndon–Hochschild–Serre spectral sequence. [2]

Related Research Articles

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.

In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative algebra A, which is simple, and for which the center is exactly K. As an example, note that any simple algebra is a central simple algebra over its center.

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group G associated to a field extension L/K acts in a natural way on some abelian groups, for example those constructed directly from L, but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor.

In mathematics, a Severi–Brauer variety over a field K is an algebraic variety V which becomes isomorphic to a projective space over an algebraic closure of K. The varieties are associated to central simple algebras in such a way that the algebra splits over K if and only if the variety has a point rational over K. Francesco Severi (1932) studied these varieties, and they are also named after Richard Brauer because of their close relation to the Brauer group.

In mathematics, Milnor K-theory is an invariant of fields defined by John Milnor (1970). Originally viewed as an approximation to algebraic K-theory, Milnor K-theory has turned out to be an important invariant in its own right.

In mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper (Tsen 1936); and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper (Lang 1952). The idea itself is attributed to Lang's advisor Emil Artin.

In mathematics, the Adams spectral sequence is a spectral sequence introduced by J. Frank Adams (1958). Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre.

In mathematics, the Herbrand quotient is a quotient of orders of cohomology groups of a cyclic group. It was invented by Jacques Herbrand. It has an important application in class field theory.

In abstract algebra, cohomological dimension is an invariant of a group which measures the homological complexity of its representations. It has important applications in geometric group theory, topology, and algebraic number theory.

In mathematics, an octonion algebra or Cayley algebra over a field F is an algebraic structure which is an 8-dimensional composition algebra over F. In other words, it is a unital non-associative algebra A over F with a non-degenerate quadratic form N such that

In mathematics, especially in the fields of group cohomology, homological algebra and number theory, the Lyndon spectral sequence or Hochschild–Serre spectral sequence is a spectral sequence relating the group cohomology of a normal subgroup N and the quotient group G/N to the cohomology of the total group G. The spectral sequence is named after Roger Lyndon, Gerhard Hochschild, and Jean-Pierre Serre.

In mathematics, five-term exact sequence or exact sequence of low-degree terms is a sequence of terms related to the first step of a spectral sequence.

In algebraic topology, a branch of mathematics, the Čech-to-derived functor spectral sequence is a spectral sequence that relates Čech cohomology of a sheaf and sheaf cohomology.

In mathematics, Jean-Pierre Serre conjectured the following statement regarding the Galois cohomology of a simply connected semisimple algebraic group. Namely, he conjectured that if G is such a group over a perfect field F of cohomological dimension at most 2, then the Galois cohomology set H1(FG) is zero.

In mathematics, the Quillen–Lichtenbaum conjecture is a conjecture relating étale cohomology to algebraic K-theory introduced by Quillen, who was inspired by earlier conjectures of Lichtenbaum (1973). Kahn (1997) and Rognes & Weibel (2000) proved the Quillen–Lichtenbaum conjecture at the prime 2 for some number fields. Voevodsky, using some important results of Markus Rost, has proved the Bloch–Kato conjecture, which implies the Quillen–Lichtenbaum conjecture for all primes.

In algebraic topology, a transgression map is a way to transfer cohomology classes. It occurs, for example in the inflation-restriction exact sequence in group cohomology, and in integration in fibers. It also naturally arises in many spectral sequences; see spectral sequence#Edge maps and transgressions.

In mathematics, the Hasse invariant of an algebra is an invariant attached to a Brauer class of algebras over a field. The concept is named after Helmut Hasse. The invariant plays a role in local class field theory.

References

  1. Gille & Szamuely (2006) p.67
  2. Gille & Szamuely (2006) p. 68