Initiation (chemistry)

Last updated

In chemistry, initiation is a chemical reaction that triggers one or more secondary reactions. Initiation creates a reactive centre on a molecule which produces a chain reaction. [1] The reactive centre generated by initiation is usually a radical, but can also be cations or anions. [2] Once the reaction is initiated, the species goes through propagation where the reactive species reacts with stable molecules, producing stable species and reactive species. This process can produce very long chains of molecules called polymers, which are the building blocks for many materials. [3] After propagation, the reaction is then terminated. There are different types of initiation, with the two main ways being thermal initiation and photo-initiation (light). [4] [5]

Contents

Thermal initiation

Thermal initiation involves initiating a reaction in the presence of heat, usually at very high temperatures. Heating a reaction can result in radical initiation of the substrate(s). [6] In the presence of heat, a monomer can self-initiate and react with other monomers or pairs of monomers. This process is called spontaneous polymerization and requires a lot of heat to occur (up to 200°C). [4] For monomers to initiate and polymerize with the same type of monomer (called Homopolymerization), ~180°C is needed for the monomers to initiate. [4] Copolymerization, which is when different kinds of monomers are initiated and react with each other, is more stable and can happen at lower temperatures than Homopolymerization. [4] Self-initiation between homo-monomers is a difficult mechanism to observe because species that are initiated aren't always the same kind of monomer. [4] Sometimes impurities found in the reaction flask with the monomers get initiated and polymerize with monomers, instead of the monomer getting initiated. [4]

Simple thermal initiation reaction of dimethyl peroxide Thermal initiation.png
Simple thermal initiation reaction of dimethyl peroxide

Photoinitiation (light)

Photo-initiation occurs when monomers get initiated by light irradiation. LED light passes through the reaction flask which excites the monomers turning them into reactive species, mainly radicals and ions, which can then polymerize. [5] There are two mechanistic classifications of photo-initiation reactions, being either a photoredox process or intramolecular photochemical process. [7] This type of initiation can happen at much lower temperatures, mainly room temperature, then thermal initiation. [5] This makes photo-initiation much more practical than thermal initiation. Photo-initiation also produces less side reactions than thermal and has less impurities. [5] Though thermal initiation is hard to maintain, photo-initiation provides an easy way to initiate monomers to polymerize. [5] Photo-initiation is even used in application such as making various coatings, adhesives, inks, and microelectronics. [5]

Simple initiation reaction of dichlorine into two chlorine radicals; initiated by light. Initiation of Cl2 by light.png
Simple initiation reaction of dichlorine into two chlorine radicals; initiated by light.

See also

Related Research Articles

A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events.

<span class="mw-page-title-main">Polymerization</span> Chemical reaction to form polymer chains

In polymer chemistry, polymerization, or polymerisation, is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many forms of polymerization and different systems exist to categorize them.

<span class="mw-page-title-main">Living polymerization</span> Chain-growth polymerization without the ability to terminate

In polymer chemistry, living polymerization is a form of chain growth polymerization where the ability of a growing polymer chain to terminate has been removed. This can be accomplished in a variety of ways. Chain termination and chain transfer reactions are absent and the rate of chain initiation is also much larger than the rate of chain propagation. The result is that the polymer chains grow at a more constant rate than seen in traditional chain polymerization and their lengths remain very similar. Living polymerization is a popular method for synthesizing block copolymers since the polymer can be synthesized in stages, each stage containing a different monomer. Additional advantages are predetermined molar mass and control over end-groups.

In polymer chemistry, emulsion polymerization is a type of radical polymerization that usually starts with an emulsion incorporating water, monomers, and surfactants. The most common type of emulsion polymerization is an oil-in-water emulsion, in which droplets of monomer are emulsified in a continuous phase of water. Water-soluble polymers, such as certain polyvinyl alcohols or hydroxyethyl celluloses, can also be used to act as emulsifiers/stabilizers. The name "emulsion polymerization" is a misnomer that arises from a historical misconception. Rather than occurring in emulsion droplets, polymerization takes place in the latex/colloid particles that form spontaneously in the first few minutes of the process. These latex particles are typically 100 nm in size, and are made of many individual polymer chains. The particles are prevented from coagulating with each other because each particle is surrounded by the surfactant ('soap'); the charge on the surfactant repels other particles electrostatically. When water-soluble polymers are used as stabilizers instead of soap, the repulsion between particles arises because these water-soluble polymers form a 'hairy layer' around a particle that repels other particles, because pushing particles together would involve compressing these chains.

In polymer chemistry, an addition polymer is a polymer that forms by simple linking of monomers without the co-generation of other products. Addition polymerization differs from condensation polymerization, which does co-generate a product, usually water. Addition polymers can be formed by chain polymerization, when the polymer is formed by the sequential addition of monomer units to an active site in a chain reaction, or by polyaddition, when the polymer is formed by addition reactions between species of all degrees of polymerization. Addition polymers are formed by the addition of some simple monomer units repeatedly. Generally polymers are unsaturated compounds like alkenes, alkalines etc. The addition polymerization mainly takes place in free radical mechanism. The free radical mechanism of addition polymerization completed by three steps i.e. Initiation of free radical, Chain propagation, Termination of chain.

<span class="mw-page-title-main">Chain-growth polymerization</span> Polymerization technique

Chain-growth polymerization (AE) or chain-growth polymerisation (BE) is a polymerization technique where unsaturated monomer molecules add onto the active site on a growing polymer chain one at a time. There are a limited number of these active sites at any moment during the polymerization which gives this method its key characteristics.

<span class="mw-page-title-main">Radical polymerization</span> Polymerization process involving free radicals as repeating units

In polymer chemistry, free-radical polymerization (FRP) is a method of polymerization by which a polymer forms by the successive addition of free-radical building blocks. Free radicals can be formed by a number of different mechanisms, usually involving separate initiator molecules. Following its generation, the initiating free radical adds (nonradical) monomer units, thereby growing the polymer chain.

In polymer chemistry, anionic addition polymerization is a form of chain-growth polymerization or addition polymerization that involves the polymerization of monomers initiated with anions. The type of reaction has many manifestations, but traditionally vinyl monomers are used. Often anionic polymerization involves living polymerizations, which allows control of structure and composition.

<span class="mw-page-title-main">Reversible addition−fragmentation chain-transfer polymerization</span>

Reversible addition−fragmentation chain-transfer or RAFT polymerization is one of several kinds of reversible-deactivation radical polymerization. It makes use of a chain-transfer agent (CTA) in the form of a thiocarbonylthio compound to afford control over the generated molecular weight and polydispersity during a free-radical polymerization. Discovered at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Australia in 1998, RAFT polymerization is one of several living or controlled radical polymerization techniques, others being atom transfer radical polymerization (ATRP) and nitroxide-mediated polymerization (NMP), etc. RAFT polymerization uses thiocarbonylthio compounds, such as dithioesters, thiocarbamates, and xanthates, to mediate the polymerization via a reversible chain-transfer process. As with other controlled radical polymerization techniques, RAFT polymerizations can be performed under conditions that favor low dispersity and a pre-chosen molecular weight. RAFT polymerization can be used to design polymers of complex architectures, such as linear block copolymers, comb-like, star, brush polymers, dendrimers and cross-linked networks.

Chain propagation (sometimes referred to as propagation) is a process in which a reactive intermediate is continuously regenerated during the course of a chemical chain reaction. For example, in the chlorination of methane, there is a two-step propagation cycle involving as chain carriers a chlorine atom and a methyl radical which are regenerated alternately:

In polymer chemistry, chain termination is any chemical reaction that ceases the formation of reactive intermediates in a chain propagation step in the course of a polymerization, effectively bringing it to a halt.

<span class="mw-page-title-main">Photopolymer</span>

A photopolymer or light-activated resin is a polymer that changes its properties when exposed to light, often in the ultraviolet or visible region of the electromagnetic spectrum. These changes are often manifested structurally, for example hardening of the material occurs as a result of cross-linking when exposed to light. An example is shown below depicting a mixture of monomers, oligomers, and photoinitiators that conform into a hardened polymeric material through a process called curing.

<span class="mw-page-title-main">Photo-oxidation of polymers</span>

In polymer chemistry photo-oxidation is the degradation of a polymer surface due to the combined action of light and oxygen. It is the most significant factor in the weathering of plastics. Photo-oxidation causes the polymer chains to break, resulting in the material becoming increasingly brittle. This leads to mechanical failure and, at an advanced stage, the formation of microplastics. In textiles the process is called phototendering.

<span class="mw-page-title-main">Living free-radical polymerization</span>

Living free radical polymerization is a type of living polymerization where the active polymer chain end is a free radical. Several methods exist. IUPAC recommends to use the term "reversible-deactivation radical polymerization" instead of "living free radical polymerization", though the two terms are not synonymous.

In polymer chemistry, cationic polymerization is a type of chain growth polymerization in which a cationic initiator transfers charge to a monomer, which then becomes reactive. This reactive monomer goes on to react similarly with other monomers to form a polymer. The types of monomers necessary for cationic polymerization are limited to alkenes with electron-donating substituents and heterocycles. Similar to anionic polymerization reactions, cationic polymerization reactions are very sensitive to the type of solvent used. Specifically, the ability of a solvent to form free ions will dictate the reactivity of the propagating cationic chain. Cationic polymerization is used in the production of polyisobutylene and poly(N-vinylcarbazole) (PVK).

<span class="mw-page-title-main">Reversible-deactivation radical polymerization</span> Type of chain polymerization

In polymer chemistry, reversible-deactivation radical polymerizations (RDRPs) are members of the class of reversible-deactivation polymerizations which exhibit much of the character of living polymerizations, but cannot be categorized as such as they are not without chain transfer or chain termination reactions. Several different names have been used in literature, which are:

In polymer chemistry, ionic polymerization is a chain-growth polymerization in which active centers are ions or ion pairs. It can be considered as an alternative to radical polymerization, and may refer to anionic polymerization or cationic polymerization.

<span class="mw-page-title-main">3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate</span> Chemical compound

3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate (ECC) is a cycloaliphatic epoxy resin which is used in many industrial applications. It reacts by cationic polymerization using thermolatent photoinitiators to form crosslinked insoluble thermosets. Formulations based on cycloaliphatic epoxy resins such as ECC are known to form by curing thermosets with high heat and chemical resistance and good adhesion.

In organosulfur chemistry, the thiol-ene reaction is an organic reaction between a thiol and an alkene to form a thioether. This reaction was first reported in 1905, but it gained prominence in the late 1990s and early 2000s for its feasibility and wide range of applications. This reaction is accepted as a click chemistry reaction given the reactions' high yield, stereoselectivity, high rate, and thermodynamic driving force.

Copper-based reversible-deactivation radical polymerization(Cu-based RDRP) is a member of the class of reversible-deactivation radical polymerization. In this system, various copper species are employed as the transition-metal catalyst for reversible activation/deactivation of the propagating chains responsible for uniform polymer chain growth.

References

  1. "Chapter 3 Initiation", Mechanism and Kinetics of Addition Polymerizations, Comprehensive Chemical Kinetics, Elsevier, vol. 31, pp. 75–162, 1992, doi:10.1016/s0069-8040(08)70220-6, ISBN   9780444987952 , retrieved 2023-03-31
  2. "Chain reaction | chemistry | Britannica". www.britannica.com. Retrieved 2023-03-31.
  3. "Polymer | Description, Examples, Types, Material, Uses, & Facts | Britannica". www.britannica.com. Retrieved 2023-03-31.
  4. 1 2 3 4 5 6 Moad, Graeme; Rizzardo, Ezio; Solomon, David H. (1989), "Other Initiating Systems", Comprehensive Polymer Science and Supplements, Elsevier, pp. 141–146, doi:10.1016/b978-0-08-096701-1.00072-0, ISBN   9780080967011 , retrieved 2023-03-31
  5. 1 2 3 4 5 6 Yagci, Yusuf; Jockusch, Steffen; Turro, Nicholas J. (2010-06-16). "Photoinitiated Polymerization: Advances, Challenges, and Opportunities". Macromolecules. 43 (15): 6245–6260. doi:10.1021/ma1007545. ISSN   0024-9297.
  6. Gijsman, Pieter; Hensen, Guido; Mak, Manon (2021-01-01). "Thermal initiation of the oxidation of thermoplastic polymers (Polyamides, Polyesters and UHMwPE)". Polymer Degradation and Stability. 183: 109452. doi:10.1016/j.polymdegradstab.2020.109452. ISSN   0141-3910. S2CID   230532425.
  7. Chen, Mao; Zhong, Mingjiang; Johnson, Jeremiah A. (2016-09-14). "Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications". Chemical Reviews. 116 (17): 10167–10211. doi:10.1021/acs.chemrev.5b00671. hdl: 1721.1/110420 . ISSN   0009-2665. PMID   26978484.

Sources

  1. R. G., Compton.1992. Mechanism and Kinetics of Addition Polymerizations, 30, 75-162.
  2. Britannica, The Editors of Encyclopaedia. "chain reaction". Encyclopedia Britannica, 2 May. 2017, https://www.britannica.com/science/chain-reaction. Accessed 29 March 2023.
  3. Britannica, The Editors of Encyclopaedia. "polymer". Encyclopedia Britannica, 2 Jan. 2023, https://www.britannica.com/science/polymer. Accessed 31 March 2023.
  4. Graeme, Moad and David H., Solomon. 1989. Comprehensive Polymer Science and Supplements. 141-146.
  5. Yagçi, Y., Jockusch, S., Turro, N.J. Photoinitiated Polymerization: Advances, Challenges, and Opportunities. Macromolecules 2010, 43, 6245–6260.
  6. Gijsman, P., Hensen, G., Manon, M. Thermal initiation of the oxidation of thermoplastic polymers (Polyamides, Polyesters and UHMwPE). Polymer Degradation and Stability 2021, 183.
  7. Chen, M., Zhong, M., Johnson, J. A. Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chemical Reviews, 2016,116(17), 10167–1021.
  8. Khojczyk (2011-20-09), English: Hofmann-Löffler-Freytag reaction mechanism, retrieved 2023-03-31.