Instance (computer science)

Last updated

When a computer system creates a new context based on a pre-existing model or scheme, the model is said to have been instantiated. The encapsulated context that results from this instantiation process is referred to as an instance of the model or scheme. This general concept applies specifically across computer science in several ways.

Contents

Object-oriented programming

Typically, OOP object instances share a data layout scheme in common with numerous other runtime instances—particularly those of the same or similar data type. In order to ensure that the values stored in each instance are kept separate for the duration of their lifetimes, the system must allocate—and privately associate with each respective new context—a distinct copy of this layout image. This prevents the values in one instance from interfering with the values in any other.

Machine identity

A computer instance can be a software state which exposes an operating system or other hosting environment. Available resources in this virtual machine typically include access to storage, a CPU, and GPU, for example.

Computer graphics

In computer graphics, a polygonal model can be instantiated in order to be drawn several times in different locations in a scene. This is a technique that can be used to improve the performance of rendering, since a portion of the work needed to display each instance is reused.

Operating systems

In the context of POSIX-oriented operating systems, the term "(program) instance" typically refers to any executing process instantiated from that program (via system calls, e.g. fork() and exec()); that is, each executing process in the OS is an instance of some program which it has been instantiated from. [1]

Related Research Articles

In object-oriented programming, a class is an extensible program-code-template for creating objects, providing initial values for state and implementations of behavior.

<span class="mw-page-title-main">Macro (computer science)</span> Rule for substituting a set input with a set output

In computer programming, a macro is a rule or pattern that specifies how a certain input should be mapped to a replacement output. Applying a macro to an input is known as macro expansion. The input and output may be a sequence of lexical tokens or characters, or a syntax tree. Character macros are supported in software applications to make it easy to invoke common command sequences. Token and tree macros are supported in some programming languages to enable code reuse or to extend the language, sometimes for domain-specific languages.

<span class="mw-page-title-main">Process (computing)</span> Particular execution of a computer program

In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity. Depending on the OS, a process may be made up of multiple threads of execution that execute instructions concurrently.

<span class="mw-page-title-main">Thread (computing)</span> Smallest sequence of programmed instructions that can be managed independently by a scheduler

In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.

In software engineering and computer science, abstraction is the process of generalizing concrete details, such as attributes, away from the study of objects and systems to focus attention on details of greater importance. Abstraction is a fundamental concept in computer science and software engineering, especially within the object-oriented programming paradigm. Examples of this include:

<span class="mw-page-title-main">Data model</span> Model that organizes elements of data and how they relate to one another and to real-world entities.

A data model is an abstract model that organizes elements of data and standardizes how they relate to one another and to the properties of real-world entities. For instance, a data model may specify that the data element representing a car be composed of a number of other elements which, in turn, represent the color and size of the car and define its owner.

<span class="mw-page-title-main">Library (computing)</span> Collection of resources used to develop a computer program

In computer science, a library is a collection of resources that is leveraged during software development to implement a computer program.

<span class="mw-page-title-main">Memory management unit</span> Hardware translating virtual addresses to physical address

A memory management unit (MMU), sometimes called paged memory management unit (PMMU), is a computer hardware unit that examines all memory references on the memory bus, translating these requests, known as virtual memory addresses, into physical addresses in main memory.

In computer operating systems, memory paging is a memory management scheme by which a computer stores and retrieves data from secondary storage for use in main memory. In this scheme, the operating system retrieves data from secondary storage in same-size blocks called pages. Paging is an important part of virtual memory implementations in modern operating systems, using secondary storage to let programs exceed the size of available physical memory.

Execution in computer and software engineering is the process by which a computer or virtual machine interpret and acts on the instructions of a computer program. Each instruction of a program is a description of a particular action which must be carried out, in order for a specific problem to be solved. Execution involves repeatedly following a 'fetch–decode–execute' cycle for each instruction done by control unit. As the executing machine follows the instructions, specific effects are produced in accordance with the semantics of those instructions.

In computer architecture, register renaming is a technique that abstracts logical registers from physical registers. Every logical register has a set of physical registers associated with it. When a machine language instruction refers to a particular logical register, the processor transposes this name to one specific physical register on the fly. The physical registers are opaque and cannot be referenced directly but only via the canonical names.

In computing, position-independent code (PIC) or position-independent executable (PIE) is a body of machine code that, being placed somewhere in the primary memory, executes properly regardless of its absolute address. PIC is commonly used for shared libraries, so that the same library code can be loaded at a location in each program's address space where it does not overlap with other memory in use by, for example, other shared libraries. PIC was also used on older computer systems that lacked an MMU, so that the operating system could keep applications away from each other even within the single address space of an MMU-less system.

In computer science, a call stack is a stack data structure that stores information about the active subroutines of a computer program. This type of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to simply "the stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages. Many computer instruction sets provide special instructions for manipulating stacks.

<span class="mw-page-title-main">Data (computer science)</span> Quantities, characters, or symbols on which operations are performed by a computer

In computer science, data is any sequence of one or more symbols; datum is a single symbol of data. Data requires interpretation to become information. Digital data is data that is represented using the binary number system of ones (1) and zeros (0), instead of analog representation. In modern (post-1960) computer systems, all data is digital.

In computing, channel I/O is a high-performance input/output (I/O) architecture that is implemented in various forms on a number of computer architectures, especially on mainframe computers. In the past, channels were generally implemented with custom devices, variously named channel, I/O processor, I/O controller, I/O synchronizer, or DMA controller.

PROMELA is a verification modeling language introduced by Gerard J. Holzmann. The language allows for the dynamic creation of concurrent processes to model, for example, distributed systems. In PROMELA models, communication via message channels can be defined to be synchronous, or asynchronous. PROMELA models can be analyzed with the SPIN model checker, to verify that the modeled system produces the desired behavior. An implementation verified with Isabelle/HOL is also available, as part of the Computer Aided Verification of Automata (CAVA) project. Files written in Promela traditionally have a .pml file extension.

<span class="mw-page-title-main">Process management (computing)</span> Computer system for maintaining order among running programs

A process is a program in execution, and an integral part of any modern-day operating system (OS). The OS must allocate resources to processes, enable processes to share and exchange information, protect the resources of each process from other processes and enable synchronization among processes. To meet these requirements, the OS must maintain a data structure for each process, which describes the state and resource ownership of that process, and which enables the OS to exert control over each process.

<span class="mw-page-title-main">Kernel (operating system)</span> Core of a computer operating system

The kernel is a computer program at the core of a computer's operating system and generally has complete control over everything in the system. The kernel is also responsible for preventing and mitigating conflicts between different processes. It is the portion of the operating system code that is always resident in memory and facilitates interactions between hardware and software components. A full kernel controls all hardware resources via device drivers, arbitrates conflicts between processes concerning such resources, and optimizes the utilization of common resources e.g. CPU & cache usage, file systems, and network sockets. On most systems, the kernel is one of the first programs loaded on startup. It handles the rest of startup as well as memory, peripherals, and input/output (I/O) requests from software, translating them into data-processing instructions for the central processing unit.

Data-intensive computing is a class of parallel computing applications which use a data parallel approach to process large volumes of data typically terabytes or petabytes in size and typically referred to as big data. Computing applications that devote most of their execution time to computational requirements are deemed compute-intensive, whereas applications are deemed data-intensive require large volumes of data and devote most of their processing time to I/O and manipulation of data.

This glossary of computer science is a list of definitions of terms and concepts used in computer science, its sub-disciplines, and related fields, including terms relevant to software, data science, and computer programming.

References

  1. Bach, Maurice J. (1986). The Design of the UNIX Operating System. Prentice Hall. pp. 10, 24. ISBN   0-13-201799-7. Archived from the original on 2010-03-15.