Institute of Environmental Sciences and Technology

Last updated

The Institute of Environmental Sciences and Technology (IEST) is a non-profit, technical society where professionals who impact controlled environments connect, gain knowledge, receive advice, and work together to create industry best practices. The organization uniquely serves environmental test engineers, qualification engineers, cleanroom professionals, those who work in product testing and evaluation, and others who work across a variety of industries, including: acoustics, aerospace, automotive, biotechnology/bioscience, climatics, cleanroom operations/design/equipment/certification, dynamics, filtration, food processing, HVAC design, medical devices, nanotechnology, pharmaceutical, semiconductors/microelectronics, and shock/vibration. Information on ISO 14644 and ISO 14698 standards can be found through this organization.

Contents

Founded in 1953, the organization is headquartered in Schaumburg, Illinois. Its members are internationally recognized in the fields of environmental tests; contamination control; product reliability; and aerospace. [1]

International standards

The organization is the Secretariat of ISO/TC 209: cleanroom and associated controlled environments. This committee writes the ISO 14644 standards. IEST is also a founding member of the ANSI-accredited US TAG to ISO/TC 229 - Nanotechnologies . [2] IEST has also revised such Federal Standards as FED-STD-209, MIL-STD-781, MIL-STD-810, and MIL-STD-1246 (now IEST-STD-1246E). [3]

The IEST also distributes to the public all ISO 14644 and ISO 14698 standards.

IEST publishes and disseminates up-to-date, reliable, technical information within each of its divisions known as IEST Recommended Practices. These Recommended Practices provide procedures based on peer-approved applications. These documents are then formulated by IEST Working Groups. IEST has also revised such Federal Standards as FED-STD-209E, MIL-STD-781, MIL-STD-810, and MIL-STD-1246 (now IEST-STD-CC1246). [4]

Journal of the IEST

The online Journal of the IEST publishes peer-reviewed technical papers, with a per-article fee, and free TechTalk articles related to the fields of contamination control; design, test, and evaluation; and product reliability. The online Journal provides never-before-available access to an entire decade of technical articles and peer-reviewed technical papers on simulation, testing, control, current research, and teaching of environmental sciences and technologies. The Journal of the IEST is the official publication of IEST, the Institute of Environmental Sciences and Technology, of archival quality with continuous publication since 1958.

Related Research Articles

<span class="mw-page-title-main">Shock (mechanics)</span> Sudden transient acceleration

A mechanical or physical shock is a sudden acceleration caused, for example, by impact, drop, kick, earthquake, or explosion. Shock is a transient physical excitation.

<span class="mw-page-title-main">Cleanroom</span> Dust-free room for research or production

A cleanroom or clean room is an engineered space, which maintains a very low concentration of airborne particulates. It is well isolated, well-controlled from contamination, and actively cleansed. Such rooms are commonly needed for scientific research, and in industrial production for all nanoscale processes, such as semiconductor manufacturing. A cleanroom is designed to keep everything from dust, to airborne organisms, or vaporised particles, away from it, and so from whatever material is being handled inside it.

<span class="mw-page-title-main">HEPA</span> Efficiency standard of air filters

HEPA filter, also known as high-efficiency particulate absorbing filter and high-efficiency particulate arrestance filter, is an efficiency standard of air filters.

A United States defense standard, often called a military standard, "MIL-STD", "MIL-SPEC", or (informally) "MilSpecs", is used to help achieve standardization objectives by the U.S. Department of Defense.

Environmental stress screening (ESS) refers to the process of exposing a newly manufactured or repaired product or component to stresses such as thermal cycling and vibration in order to force latent defects to manifest themselves by permanent or catastrophic failure during the screening process. The surviving population, upon completion of screening, can be assumed to have a higher reliability than a similar unscreened population.

ULPA is an acronym for "Ultra-low Penetration Air (filter)". A ULPA filter can remove from the air at least 99.999% of dust, pollen, mold, bacteria and any airborne particles with a minimum particle penetration size of 120 nanometres. A ULPA filter can remove – oil smoke, tobacco smoke, rosin smoke, smog, insecticide dust.

<span class="mw-page-title-main">MIL-STD-810</span> Military standard

MIL-STD-810, U S Department of Defense Test Method Standard, Environmental Engineering Considerations and Laboratory Tests, is a United States Military Standard that emphasizes tailoring an equipment's environmental design and test limits to the conditions that it will experience throughout its service life, and establishing chamber test methods that replicate the effects of environments on the equipment rather than imitating the environments themselves. Although prepared specifically for U.S. military applications, the standard is often applied for commercial products as well.

A rugged computer or ruggedized computer is a computer specifically designed to operate reliably in harsh usage environments and conditions, such as strong vibrations, extreme temperatures and wet or dusty conditions. They are designed from inception for the type of rough use typified by these conditions, not just in the external housing but in the internal components and cooling arrangements as well.

A particle counter is used for monitoring and diagnosing particle contamination within specific clean media, including air, water and chemicals. Particle counters are used in a variety of applications in support of clean manufacturing practices, industries include: electronic components and assemblies, pharmaceutical drug products and medical devices, and industrial technologies such as oil and gas.

<span class="mw-page-title-main">Air shower (room)</span>

Air showers are specialized enclosed antechambers which are incorporated as entryways of cleanrooms and other controlled environments to reduce particle contamination. Air showers utilize high-pressure, HEPA- or ULPA-filtered air to remove dust, fibrous lint and other contaminants from personnel or object surfaces. The forceful "cleansing" of surfaces prior to entering clean environments reduces the number of airborne particulates introduced.

FED-STD-209 EAirborne Particulate Cleanliness Classes in Cleanrooms and Cleanzones was a federal standard concerning classification of air cleanliness, intended for use in environments like cleanrooms. The standard based its classifications on the measurement of airborne particles.

ISO 14644 Standards were first formed from the US Federal Standard 209E Airborne Particulate Cleanliness Classes in Cleanrooms and Clean Zones. The need for a single standard for cleanroom classification and testing was long felt. After ANSI and IEST petitioned to ISO for new standards, the first document of ISO 14644 was published in 1999, ISO 14644-1.

The ISO 14698 Standards features two International Standards on biocontamination control for cleanrooms. IEST, the Secretariat and Administrator of ISO Technical Committee 209, helped develop this series of ISO 14698 Standards.

For United States Military Standards, IEST-STD-CC1246 is the latest revision of MIL-STD-1246. This all came about in 1997, the Army Missile Command commissioned the Institute of Environmental Sciences and Technology (IEST) to revise and adopt MIL-STD-1246 as an industry standard as its usefulness had expanded far beyond military applications, and U.S. policy was requiring agencies to convert government standards to nongovernmental standards where practical.

<span class="mw-page-title-main">Contamination control</span> Activities aiming to reduce contamination

Contamination control is the generic term for all activities aiming to control the existence, growth and proliferation of contamination in certain areas. Contamination control may refer to the atmosphere as well as to surfaces, to particulate matter as well as to microbes and to contamination prevention as well as to decontamination.

Reliability of semiconductor devices can be summarized as follows:

  1. Semiconductor devices are very sensitive to impurities and particles. Therefore, to manufacture these devices it is necessary to manage many processes while accurately controlling the level of impurities and particles. The finished product quality depends upon the many layered relationship of each interacting substance in the semiconductor, including metallization, chip material and package.
  2. The problems of micro-processes, and thin films and must be fully understood as they apply to metallization and wire bonding. It is also necessary to analyze surface phenomena from the aspect of thin films.
  3. Due to the rapid advances in technology, many new devices are developed using new materials and processes, and design calendar time is limited due to non-recurring engineering constraints, plus time to market concerns. Consequently, it is not possible to base new designs on the reliability of existing devices.
  4. To achieve economy of scale, semiconductor products are manufactured in high volume. Furthermore, repair of finished semiconductor products is impractical. Therefore, incorporation of reliability at the design stage and reduction of variation in the production stage have become essential.
  5. Reliability of semiconductor devices may depend on assembly, use, environmental, and cooling conditions. Stress factors affecting device reliability include gas, dust, contamination, voltage, current density, temperature, humidity, mechanical stress, vibration, shock, radiation, pressure, and intensity of magnetic and electrical fields.
<span class="mw-page-title-main">Environmental chamber</span>

An environmental chamber, also called a climatic chamber or climate chamber, is an enclosure used to test the effects of specified environmental conditions on biological items, industrial products, materials, and electronic devices and components.

Cleanroom suitability describes the suitability of a machine, operating utility, material, etc. for use in a cleanroom, where air cleanliness and other parameters are controlled by way of technical regulations in accordance with ISO 14644.

<span class="mw-page-title-main">Fan filter unit</span>

A fan filter unit (FFU) is a type of motorized air filtering equipment. It is used to supply purified air to cleanrooms, laboratories, medical facilities or microenvironments by removing harmful airborne particles from recirculating air. The units are installed within the system's ceiling or floor grid. Large cleanrooms require a proportionally large number of FFUs, which in some cases may range from several hundred to several thousand. Units often contain their own pre-filter, HEPA filter and internally controllable fan air distribution.

<span class="mw-page-title-main">Direct-field acoustic testing</span> Testing method

Direct-field acoustic testing, or DFAT, is a technique used for acoustic testing of aerospace structures by subjecting them to sound waves created by an array of acoustic drivers. The method uses electro-dynamic acoustic speakers, arranged around the test article to provide a uniform, well-controlled, direct sound field at the surface of the unit under test. The system employs high capability acoustic drivers, powerful audio amplifiers, a narrow-band multiple-input-multiple-output (MIMO) controller and precision laboratory microphones to produce an acoustic environment that can simulate a helicopter, aircraft, jet engine or launch vehicle sound pressure field. A high level system is capable of overall sound pressure levels in the 125–147 dB for more than one minute over a frequency range from 25 Hz to 10 kHz.

References

  1. "About IEST". IEST. 2007-12-03. Retrieved 2008-01-14.
  2. "IEST Technical Services". IEST. 2007-12-03. Retrieved 2008-01-14.
  3. "About IEST". IEST. 2007-12-03. Retrieved 2013-10-09.
  4. "IEST Recommended Practices". IEST. 2007-12-03. Retrieved 2008-01-14.

Official website OOjs UI icon edit-ltr-progressive.svg