Interface conditions for electromagnetic fields

Last updated

Interface conditions describe the behaviour of electromagnetic fields; electric field, electric displacement field, and the magnetic field at the interface of two materials. The differential forms of these equations require that there is always an open neighbourhood around the point to which they are applied, otherwise the vector fields and H are not differentiable. In other words, the medium must be continuous[no need to be continuous][This paragraph need to be revised, the wrong concept of "continuous" need to be corrected]. On the interface of two different media with different values for electrical permittivity and magnetic permeability, that condition does not apply.

Contents

However, the interface conditions for the electromagnetic field vectors can be derived from the integral forms of Maxwell's equations.

Interface conditions for electric field vectors

Electric field strength

where:
is normal vector from medium 1 to medium 2.

Therefore, the tangential component of E is continuous across the interface.

Electric displacement field

is the unit normal vector from medium 1 to medium 2.
is the surface charge density between the media (unbounded charges only, not coming from polarization of the materials).

This can be deduced by using Gauss's law and similar reasoning as above.

Therefore, the normal component of D has a step of surface charge on the interface surface. If there is no surface charge on the interface, the normal component of D is continuous.

Interface conditions for magnetic field vectors

For magnetic flux density

where:
is normal vector from medium 1 to medium 2.

Therefore, the normal component of B is continuous across the interface (the same in both media). (The tangential components are in the ratio of the permeabilities.) [1]

For magnetic field strength

where:
is the unit normal vector from medium 1 to medium 2.
is the surface current density between the two media (unbounded current only, not coming from polarisation of the materials).

Therefore, the tangential component of H is discontinuous across the interface by an amount equal to the magnitude of the surface current density. The normal components of H in the two media are in the ratio of the permeabilities. [1]

Discussion according to the media beside the interface

If medium 1 & 2 are perfect dielectrics

There are no charges nor surface currents at the interface, and so the tangential component of H and the normal component of D are both continuous.

If medium 1 is a perfect dielectric and medium 2 is a perfect metal

There are charges and surface currents at the interface, and so the tangential component of H and the normal component of D are not continuous. [1]

Boundary conditions

The boundary conditions must not be confused with the interface conditions. For numerical calculations, the space where the calculation of the electromagnetic field is achieved must be restricted to some boundaries. This is done by assuming conditions at the boundaries which are physically correct and numerically solvable in finite time. In some cases, the boundary conditions resume to a simple interface condition. The most usual and simple example is a fully reflecting (electric wall) boundary - the outer medium is considered as a perfect conductor. In some cases, it is more complicated: for example, the reflection-less (i.e. open) boundaries are simulated as perfectly matched layer or magnetic wall that do not resume to a single interface.

See also

Related Research Articles

<span class="mw-page-title-main">Fresnel equations</span> Equations of light transmission and reflection

The Fresnel equations describe the reflection and transmission of light when incident on an interface between different optical media. They were deduced by French engineer and physicist Augustin-Jean Fresnel who was the first to understand that light is a transverse wave, when no one realized that the waves were electric and magnetic fields. For the first time, polarization could be understood quantitatively, as Fresnel's equations correctly predicted the differing behaviour of waves of the s and p polarizations incident upon a material interface.

<span class="mw-page-title-main">Maxwell's equations</span> Equations describing classical electromagnetism

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

<span class="mw-page-title-main">Magnetic field</span> Distribution of magnetic force

A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.

<span class="mw-page-title-main">Electric field</span> Physical field surrounding an electric charge

An electric field is the physical field that surrounds electrically charged particles. Charged particles exert attractive forces on each other when their charges are opposite, and repulse each other when their charges are the same. Because these forces are exerted mutually, two charges must be present for the forces to take place. The electric field of a single charge describes their capacity to exert such forces on another charged object. These forces are described by Coulomb's law, which says that the greater the magnitude of the charges, the greater the force, and the greater the distance between them, the weaker the force. Thus, we may informally say that the greater the charge of an object, the stronger its electric field. Similarly, an electric field is stronger nearer charged objects and weaker further away. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, Electromagnetism is one of the four fundamental interactions of nature.

Flux describes any effect that appears to pass or travel through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface.

<span class="mw-page-title-main">Poynting vector</span> Measure of directional electromagnetic energy flux

In physics, the Poynting vector represents the directional energy flux or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m2); kg/s3 in base SI units. It is named after its discoverer John Henry Poynting who first derived it in 1884. Nikolay Umov is also credited with formulating the concept. Oliver Heaviside also discovered it independently in the more general form that recognises the freedom of adding the curl of an arbitrary vector field to the definition. The Poynting vector is used throughout electromagnetics in conjunction with Poynting's theorem, the continuity equation expressing conservation of electromagnetic energy, to calculate the power flow in electromagnetic fields.

<span class="mw-page-title-main">Magnetic flux</span> Surface integral of the magnetic field

In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or ΦB. The SI unit of magnetic flux is the weber, and the CGS unit is the maxwell. Magnetic flux is usually measured with a fluxmeter, which contains measuring coils, and it calculates the magnetic flux from the change of voltage on the coils.

<span class="mw-page-title-main">Ampère's circuital law</span> Concept in classical electromagnetism

In classical electromagnetism, Ampère's circuital law relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop.

In electromagnetics, an evanescent field, or evanescent wave, is an oscillating electric and/or magnetic field that does not propagate as an electromagnetic wave but whose energy is spatially concentrated in the vicinity of the source. Even when there is a propagating electromagnetic wave produced, one can still identify as an evanescent field the component of the electric or magnetic field that cannot be attributed to the propagating wave observed at a distance of many wavelengths.

<span class="mw-page-title-main">Displacement current</span> Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

<span class="mw-page-title-main">Faraday's law of induction</span> Basic law of electromagnetism

Faraday's law of induction is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction, is the fundamental operating principle of transformers, inductors, and many types of electric motors, generators and solenoids.

<span class="mw-page-title-main">Electric displacement field</span> Vector field related to displacement current and flux density

In physics, the electric displacement field or electric induction is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field. It plays a major role in topics such as the capacitance of a material, as well as the response of dielectrics to an electric field, and how shapes can change due to electric fields in piezoelectricity or flexoelectricity as well as the creation of voltages and charge transfer due to elastic strains.

<span class="mw-page-title-main">Magnetization</span> Physical quantity, density of magnetic moment per volume

In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. It is represented by a pseudovector M. Magnetization can be compared to electric polarization, which is the measure of the corresponding response of a material to an electric field in electrostatics.

<span class="mw-page-title-main">Reciprocity (electromagnetism)</span> Theorem in classical electromagnetism

In classical electromagnetism, reciprocity refers to a variety of related theorems involving the interchange of time-harmonic electric current densities (sources) and the resulting electromagnetic fields in Maxwell's equations for time-invariant linear media under certain constraints. Reciprocity is closely related to the concept of symmetric operators from linear algebra, applied to electromagnetism.

The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

<span class="mw-page-title-main">Current density</span> Amount of charge flowing through a unit cross-sectional area per unit time

In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point. In SI base units, the electric current density is measured in amperes per square metre.

In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be parameterized in terms of either the loss angleδ or the corresponding loss tangenttan(δ). Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.

The electromagnetism uniqueness theorem states the uniqueness of a solution to Maxwell's equations, if the boundary conditions provided satisfy the following requirements:

  1. At , the initial values of all fields everywhere is specified;
  2. For all times, the component of either the electric field E or the magnetic field H tangential to the boundary surface is specified.

The Shchukin-Leontovich boundary condition is a boundary condition in classical electrodynamics that relates to the tangential components of the electric Et and magnetic Ht fields on the surface of well-conducting bodies.

<span class="mw-page-title-main">Charge based boundary element fast multipole method</span> Numerical technique for bioelectromagnetic modeling

The charge-based formulation of the boundary element method (BEM) is a dimensionality reduction numerical technique that is used to model quasistatic electromagnetic phenomena in highly complex conducting media with a very large number of unknowns. The charge-based BEM solves an integral equation of the potential theory written in terms of the induced surface charge density. This formulation is naturally combined with fast multipole method (FMM) acceleration, and the entire method is known as charge-based BEM-FMM. The combination of BEM and FMM is a common technique in different areas of computational electromagnetics and, in the context of bioelectromagnetism, it provides improvements over the finite element method.

References

Sources