Perfectly matched layer

Last updated
A FDTD scheme for a light scattering problem. The striped borders correspond to perfectly matched layers, which are used to simulate open boundaries by absorbing the outgoing waves. FDTD TFSF (English).png
A FDTD scheme for a light scattering problem. The striped borders correspond to perfectly matched layers, which are used to simulate open boundaries by absorbing the outgoing waves.

A perfectly matched layer (PML) is an artificial absorbing layer for wave equations, commonly used to truncate computational regions in numerical methods to simulate problems with open boundaries, especially in the FDTD and FE methods. [1] [2] The key property of a PML that distinguishes it from an ordinary absorbing material is that it is designed so that waves incident upon the PML from a non-PML medium do not reflect at the interface—this property allows the PML to strongly absorb outgoing waves from the interior of a computational region without reflecting them back into the interior.

Contents

PML was originally formulated by Berenger in 1994 [3] for use with Maxwell's equations, and since that time there have been several related reformulations of PML for both Maxwell's equations and for other wave-type equations, such as elastodynamics, [4] the linearized Euler equations, Helmholtz equations, and poroelasticity. Berenger's original formulation is called a split-field PML, because it splits the electromagnetic fields into two unphysical fields in the PML region. A later formulation that has become more popular because of its simplicity and efficiency is called uniaxial PML or UPML, [5] in which the PML is described as an artificial anisotropic absorbing material. Although both Berenger's formulation and UPML were initially derived by manually constructing the conditions under which incident plane waves do not reflect from the PML interface from a homogeneous medium, both formulations were later shown to be equivalent to a much more elegant and general approach: stretched-coordinate PML. [6] [7] In particular, PMLs were shown to correspond to a coordinate transformation in which one (or more) coordinates are mapped to complex numbers; more technically, this is actually an analytic continuation of the wave equation into complex coordinates, replacing propagating (oscillating) waves by exponentially decaying waves. This viewpoint allows PMLs to be derived for inhomogeneous media such as waveguides, as well as for other coordinate systems and wave equations. [8] [9]

Technical description

Absorption of a pulsed spherical wave through stretched coordinate PML in 2D FDTD method. The white border indicates the simulation boundary.

Specifically, for a PML designed to absorb waves propagating in the x direction, the following transformation is included in the wave equation. Wherever an x derivative appears in the wave equation, it is replaced by:

where is the angular frequency and is some function of x. Wherever is positive, propagating waves are attenuated because:

where we have taken a planewave propagating in the +x direction (for ) and applied the transformation (analytic continuation) to complex coordinates: , or equivalently . The same coordinate transformation causes waves to attenuate whenever their x dependence is in the form for some propagation constant k: this includes planewaves propagating at some angle with the x axis and also transverse modes of a waveguide.

The above coordinate transformation can be left as-is in the transformed wave equations, or can be combined with the material description (e.g. the permittivity and permeability in Maxwell's equations) to form a UPML description. The coefficient σ/ω depends upon frequencythis is so the attenuation rate is proportional to k/ω, which is independent of frequency in a homogeneous material (not including material dispersion, e.g. for vacuum) because of the dispersion relation between ω and k. However, this frequency-dependence means that a time domain implementation of PML, e.g. in the FDTD method, is more complicated than for a frequency-independent absorber, and involves the auxiliary differential equation (ADE) approach (equivalently, i/ω appears as an integral or convolution in time domain).

Perfectly matched layers, in their original form, only attenuate propagating waves; purely evanescent waves (exponentially decaying fields) oscillate in the PML but do not decay more quickly. However, the attenuation of evanescent waves can also be accelerated by including a real coordinate stretching in the PML: this corresponds to making σ in the above expression a complex number, where the imaginary part yields a real coordinate stretching that causes evanescent waves to decay more quickly.

Limitations of perfectly matched layers

PML is widely used and has become the absorbing boundary technique of choice in much of computational electromagnetism. [1] Although it works well in most cases, there are a few important cases in which it breaks down, suffering from unavoidable reflections or even exponential growth.

One caveat with perfectly matched layers is that they are only reflectionless for the exact, continuous wave equation. Once the wave equation is discretized for simulation on a computer, some small numerical reflections appear (which vanish with increasing resolution). For this reason, the PML absorption coefficient σ is typically turned on gradually from zero (e.g. quadratically) over a short distance on the scale of the wavelength of the wave. [1] In general, any absorber, whether PML or not, is reflectionless in the limit where it turns on sufficiently gradually (and the absorbing layer becomes thicker), but in a discretized system the benefit of PML is to reduce the finite-thickness "transition" reflection by many orders of magnitude compared to a simple isotropic absorption coefficient. [10]

In certain materials, there are "backward-wave" solutions in which group and phase velocity are opposite to one another. This occurs in "left-handed" negative index metamaterials for electromagnetism and also for acoustic waves in certain solid materials, and in these cases the standard PML formulation is unstable: it leads to exponential growth rather than decay, simply because the sign of k is flipped in the analysis above. [11] Fortunately, there is a simple solution in a left-handed medium (for which all waves are backwards): merely flip the sign of σ. A complication, however, is that physical left-handed materials are dispersive: they are only left-handed within a certain frequency range, and therefore the σ coefficient must be made frequency-dependent. [12] [13] Unfortunately, even without exotic materials, one can design certain waveguiding structures (such as a hollow metal tube with a high-index cylinder in its center) that exhibit both backwards- and forwards-wave solutions at the same frequency, such that any sign choice for σ will lead to exponential growth, and in such cases PML appears to be irrecoverably unstable. [14]

Another important limitation of PML is that it requires that the medium be invariant in the direction orthogonal to the boundary, in order to support the analytic continuation of the solution to complex coordinates (the complex "coordinate stretching"). As a consequence, the PML approach is no longer valid (no longer reflectionless at infinite resolution) in the case of periodic media (e.g. photonic crystals or phononic crystals) [10] or even simply a waveguide that enters the boundary at an oblique angle. [15]

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Maxwell's equations</span> Equations describing classical electromagnetism

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

<span class="mw-page-title-main">Cutoff frequency</span> Frequency response boundary

In physics and electrical engineering, a cutoff frequency, corner frequency, or break frequency is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced rather than passing through.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Wavenumber</span> Spatial frequency of a wave

In the physical sciences, the wavenumber, also known as repetency, is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time or radians per unit time.

<span class="mw-page-title-main">Drude model</span> Model of electrical conduction

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.

<span class="mw-page-title-main">Dispersion relation</span> Relation of wavelength/wavenumber as a function of a waves frequency

In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency-dependence of wave propagation and attenuation.

Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.

<span class="mw-page-title-main">Love wave</span> Horizontally polarized surface waves

In elastodynamics, Love waves, named after Augustus Edward Hough Love, are horizontally polarized surface waves. The Love wave is a result of the interference of many shear waves (S-waves) guided by an elastic layer, which is welded to an elastic half space on one side while bordering a vacuum on the other side. In seismology, Love waves (also known as Q waves (Quer: German for lateral)) are surface seismic waves that cause horizontal shifting of the Earth during an earthquake. Augustus Edward Hough Love predicted the existence of Love waves mathematically in 1911. They form a distinct class, different from other types of seismic waves, such as P-waves and S-waves (both body waves), or Rayleigh waves (another type of surface wave). Love waves travel with a lower velocity than P- or S- waves, but faster than Rayleigh waves. These waves are observed only when there is a low velocity layer overlying a high velocity layer/ sub–layers.

In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be parameterized in terms of either the loss angleδ or the corresponding loss tangenttan(δ). Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.

The McCumber relation is a relationship between the effective cross-sections of absorption and emission of light in the physics of solid-state lasers. It is named after Dean McCumber, who proposed the relationship in 1964.

<span class="mw-page-title-main">Stokes wave</span> Nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth

In fluid dynamics, a Stokes wave is a nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth. This type of modelling has its origins in the mid 19th century when Sir George Stokes – using a perturbation series approach, now known as the Stokes expansion – obtained approximate solutions for nonlinear wave motion.

When an electromagnetic wave travels through a medium in which it gets attenuated, it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated. This article describes the mathematical relationships among:

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

<span class="mw-page-title-main">Surface plasmon polariton</span> Electromagnetic waves that travel along an interface

Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible-frequency. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal and electromagnetic waves in the air or dielectric ("polariton").

In acoustics, acoustic attenuation is a measure of the energy loss of sound propagation through an acoustic transmission medium. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity. This effect can be quantified through the Stokes's law of sound attenuation. Sound attenuation may also be a result of heat conductivity in the media as has been shown by G. Kirchhoff in 1868. The Stokes-Kirchhoff attenuation formula takes into account both viscosity and thermal conductivity effects.

In computational fluid dynamics, the k–omega (k–ω) turbulence model is a common two-equation turbulence model, that is used as an approximation for the Reynolds-averaged Navier–Stokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first variable being the turbulence kinetic energy (k) while the second (ω) is the specific rate of dissipation (of the turbulence kinetic energy k into internal thermal energy).

Menter's Shear Stress Transport turbulence model, or SST, is a widely used and robust two-equation eddy-viscosity turbulence model used in Computational Fluid Dynamics. The model combines the k-omega turbulence model and K-epsilon turbulence model such that the k-omega is used in the inner region of the boundary layer and switches to the k-epsilon in the free shear flow.

<span class="mw-page-title-main">Averaged Lagrangian</span>

In continuum mechanics, Whitham's averaged Lagrangian method – or in short Whitham's method – is used to study the Lagrangian dynamics of slowly-varying wave trains in an inhomogeneous (moving) medium. The method is applicable to both linear and non-linear systems. As a direct consequence of the averaging used in the method, wave action is a conserved property of the wave motion. In contrast, the wave energy is not necessarily conserved, due to the exchange of energy with the mean motion. However the total energy, the sum of the energies in the wave motion and the mean motion, will be conserved for a time-invariant Lagrangian. Further, the averaged Lagrangian has a strong relation to the dispersion relation of the system.

References

  1. 1 2 3 Allen Taflove and Susan C. Hagness (2005). Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Artech House Publishers. ISBN   978-1-58053-832-9.
  2. Johnson, Steven G. (2021). "Notes on Perfectly Matched Layers (PMLs)". arXiv: 2108.05348 [physics.comp-ph]. Tutorial review based on online MIT course notes.
  3. J. Berenger (1994). "A perfectly matched layer for the absorption of electromagnetic waves". Journal of Computational Physics. 114 (2): 185–200. Bibcode:1994JCoPh.114..185B. doi:10.1006/jcph.1994.1159.
  4. Fathi, Arash; Poursartip, Babak; Kallivokas, Loukas (2015). "Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated heterogeneous media". International Journal for Numerical Methods in Engineering. 101 (3): 165–198. Bibcode:2015IJNME.101..165F. doi:10.1002/nme.4780. S2CID   122812832.
  5. S.D. Gedney (1996). "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD latices". IEEE Transactions on Antennas and Propagation. 44 (12): 1630–1639. Bibcode:1996ITAP...44.1630G. doi:10.1109/8.546249.
  6. W. C. Chew and W. H. Weedon (1994). "A 3d perfectly matched medium from modified Maxwell's equations with stretched coordinates". Microwave Optical Tech. Letters. 7 (13): 599–604. Bibcode:1994MiOTL...7..599C. doi:10.1002/mop.4650071304.
  7. F. L. Teixeira W. C. Chew (1998). "General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media". IEEE Microwave and Guided Wave Letters. 8 (6): 223–225. doi:10.1109/75.678571.
  8. V. Kalvin (2012). "Limiting absorption principle and perfectly matched layer method for Dirichlet Laplacian in quasi-cylindrical domains". SIAM J. Math. Anal. 44: 355–382. arXiv: 1110.4912 . doi:10.1137/110834287. S2CID   2625082.
  9. V. Kalvin (2013). "Analysis of perfectly matched layer operators for acoustic scattering on manifolds with quasicylindrical ends". J. Math. Pures Appl. 100 (2): 204–219. arXiv: 1212.5707 . doi:10.1016/j.matpur.2012.12.001. S2CID   119315209.
  10. 1 2 A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers, Optics Express16, 11376–11392 (2008).
  11. E. Bécache, S. Fauqueux and P. Joly (2003). "Stability of perfectly matched layers, group velocities and anisotropic waves" (PDF). Journal of Computational Physics. 188 (2): 399–433. Bibcode:2003JCoPh.188..399B. doi:10.1016/S0021-9991(03)00184-0. S2CID   18020140.
  12. Cummer Steven A (2004). "Perfectly Matched Layer Behavior in Negative Refractive Index Materials". IEEE Ant. Wireless Prop. Lett. 3 (9): 172–175. Bibcode:2004IAWPL...3..172C. doi:10.1109/lawp.2004.833710. S2CID   18838504.
  13. Dong X. T., Rao X. S., Gan Y. B., Guo B., Yin W.-Y. (2004). "Perfectly matched layer-absorbing boundary condition for left-handed materials". IEEE Microwave Wireless Components Lett. 14 (6): 301–333. doi:10.1109/lmwc.2004.827104. S2CID   19568400.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. Loh P.-R., Oskooi A. F., Ibanescu M., Skorobogatiy M., Johnson S. G. (2009). "Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures" (PDF). Phys. Rev. E. 79 (6): 065601. Bibcode:2009PhRvE..79f5601L. doi:10.1103/physreve.79.065601. hdl: 1721.1/51780 . PMID   19658556.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. Oskooi A., Johnson S. G. (2011). "Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media" (PDF). Journal of Computational Physics. 230 (7): 2369–2377. Bibcode:2011JCoPh.230.2369O. doi:10.1016/j.jcp.2011.01.006.