Ipsita Roy

Last updated
Ipsita Roy
Alma mater University of Cambridge
University of Delhi
Scientific career
Institutions University of Minnesota
Indian Institutes of Technology
Thesis Studies on methylmalonyl-CoA mutase.  (1992)

Ipsita Roy is a British-Indian materials scientist who is a professor at the University of Sheffield. Her research considers natural polymers of bacterial origin for medical applications. She was elected to the New York Academy of Sciences in 1997 and serves as the Editor of the Journal of Chemical Technology & Biotechnology .

Contents

Early life and education

Roy was an undergraduate student Delhi University. [1] She was awarded a Inlaks Scholarship and the Overseas Research Students Award to complete her doctoral research at the University of Cambridge. [1] [2] Whilst at Cambridge, she was awarded the Churchill College Fellowship and the University of Cambridge Philosophical Society Fellowship. Roy was a postdoctoral student at the University of Minnesota, where she worked in fatty acid synthesis. [1]

Research and career

Roy started her independent career at the Indian Institutes of Technology in 1996, where she started to explore biodegradable polymers, which she formed from Streptomyces. After four years as an assistant professor at the IIT, Roy moved to the United Kingdom, where she joined the University of Westminster. She led the Applied Biotechnology Research Group in the School of Life Sciences. Roy moved to the University of Sheffield in 2019, where she is Professor of Biomaterials. [3]

Roy investigates polyhydroxyalkanoates (PHAs), biocompatible, biodegradable polymers that are produced by bacteria. [2] She has shown it is possible to form PHAs from Gram-positive bacteria which do not degrade into acidic products like polylactic acid or PLGA. At the same time, PHAs do not degrade in the bulk but on the surface, making them more stable than other biopolymers. Such polymers exist at two different molecular weights, which have very different materials properties; with short-chains being brittle and mid length chains being elastomeric. In regenerative medicine, PHAs with precise molecular weights can be used for different tissue types. [4] This makes PHAs useful for medical applications such as tissue engineering and wound healing. [4]

Roy has worked alongside Sian Harding, Carolyn Carr and Molly Stevens at Imperial College London on the design of cardiac patches based on PHAs as platforms for cell engraftment and the controlled delivery of pharmaceuticals using PHA microspheres. [4]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Biopolymer</span> Polymer produced by a living organism

Biopolymers are natural polymers produced by the cells of living organisms. Like other polymers, biopolymers consist of monomeric units that are covalently bonded in chains to form larger molecules. There are three main classes of biopolymers, classified according to the monomers used and the structure of the biopolymer formed: polynucleotides, polypeptides, and polysaccharides. The Polynucleotides, RNA and DNA, are long polymers of nucleotides. Polypeptides include proteins and shorter polymers of amino acids; some major examples include collagen, actin, and fibrin. Polysaccharides are linear or branched chains of sugar carbohydrates; examples include starch, cellulose and alginate. Other examples of biopolymers include natural rubbers, suberin and lignin, cutin and cutan and melanin.

<span class="mw-page-title-main">Hydrogel</span>

A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels are synthetic, but some are derived from nature. The term 'hydrogel' was coined in 1894.

<span class="mw-page-title-main">Polyhydroxybutyrate</span>

Polyhydroxybutyrate (PHB) is a polyhydroxyalkanoate (PHA), a polymer belonging to the polyesters class that are of interest as bio-derived and biodegradable plastics. The poly-3-hydroxybutyrate (P3HB) form of PHB is probably the most common type of polyhydroxyalkanoate, but other polymers of this class are produced by a variety of organisms: these include poly-4-hydroxybutyrate (P4HB), polyhydroxyvalerate (PHV), polyhydroxyhexanoate (PHH), polyhydroxyoctanoate (PHO) and their copolymers.

<span class="mw-page-title-main">Polyhydroxyalkanoates</span> Polyester family

Polyhydroxyalkanoates or PHAs are polyesters produced in nature by numerous microorganisms, including through bacterial fermentation of sugars or lipids. When produced by bacteria they serve as both a source of energy and as a carbon store. More than 150 different monomers can be combined within this family to give materials with extremely different properties. These plastics are biodegradable and are used in the production of bioplastics.

<span class="mw-page-title-main">Polydioxanone</span>

Polydioxanone or poly-p-dioxanone is a colorless, crystalline, biodegradable synthetic polymer.

<span class="mw-page-title-main">Biodegradable plastic</span> Plastics that can be decomposed by the action of living organisms

Biodegradable plastics are plastics that can be decomposed by the action of living organisms, usually microbes, into water, carbon dioxide, and biomass. Biodegradable plastics are commonly produced with renewable raw materials, micro-organisms, petrochemicals, or combinations of all three.

<span class="mw-page-title-main">Biomaterial</span> Any substance that has been engineered to interact with biological systems for a medical purpose

A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic or a diagnostic one. As a science, biomaterials is about fifty years old. The study of biomaterials is called biomaterials science or biomaterials engineering. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering and materials science.

<span class="mw-page-title-main">Biodegradable polymer</span>

Biodegradable polymers are a special class of polymer that breaks down after its intended purpose by bacterial decomposition process to result in natural byproducts such as gases (CO2, N2), water, biomass, and inorganic salts. These polymers are found both naturally and synthetically made, and largely consist of ester, amide, and ether functional groups. Their properties and breakdown mechanism are determined by their exact structure. These polymers are often synthesized by condensation reactions, ring opening polymerization, and metal catalysts. There are vast examples and applications of biodegradable polymers.

<span class="mw-page-title-main">PHBV</span> Chemical compound

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), commonly known as PHBV, is a polyhydroxyalkanoate-type polymer. It is biodegradable, nontoxic, biocompatible plastic produced naturally by bacteria and a good alternative for many non-biodegradable synthetic polymers. It is a thermoplastic linear aliphatic polyester. It is obtained by the copolymerization of 3-hydroxybutanoic acid and 3-hydroxypentanoic acid. PHBV is used in speciality packaging, orthopedic devices and in controlled release of drugs. PHBV undergoes bacterial degradation in the environment.

<span class="mw-page-title-main">Rui L. Reis</span> Portuguese scientist (born 1967)

Rui Luís Reis is a Portuguese scientist known for his research in tissue engineering, regenerative medicine, biomaterials, biomimetics, stem cells, and biodegradable polymers.

Isao Noda is a chemical engineer whose research has focused on polymer science and spectroscopy. He holds ninety patents granted in the United States and the EU, has published over three hundred articles, co-authored three books, and received a number of industry-wide awards and recognition for his contributions to his fields of research.

<span class="mw-page-title-main">Sheila MacNeil</span> Professor of Tissue Engineering

Sheila MacNeil is a Professor of Tissue Engineering at the University of Sheffield. She works alongside NHS clinicians to use tissue engineered skin to benefit patients with burns, chronic ulcers and those recovering from surgery. She developed MySkin, skin bandages that are used to treat burns in 11 of 13 major UK burns units.

Sarah Harriet Cartmell is a British biomaterials scientist and Professor of Bioengineering at the University of Manchester. She specializes on the potential use of electrical regimes to influence cellular activity for orthopaedic tissue engineering applications.

Elizabeth Cosgriff-Hernandez is an American biomedical engineer who is a professor at the University of Texas at Austin. Her work involves the development of polymeric biomaterials for medical devices and tissue regeneration. She also serves on the scientific advisory board of ECM Biosurgery and as a consultant to several companies on biostability evaluation of medical devices. Cosgriff-Hernandez is an associate editor of the Journal of Materials Chemistry B and Fellow of the International Union of Societies for Biomaterials Science and Engineering, Biomedical Engineering Society, Royal Society of Chemistry, and the American Institute for Medical and Biological Engineering.

<span class="mw-page-title-main">ChoKyun Rha</span> Korean-American engineering professor (1933–2021)

ChoKyun Rha was a Korean-born American food technologist, inventor, and professor of biomaterials science and engineering at the Massachusetts Institute of Technology (MIT). She was the first Asian woman awarded tenure at MIT.

<span class="mw-page-title-main">Amar K. Mohanty</span> Material scientist and biomaterial engineer

Amar K. Mohanty is a material scientist and biobased material engineer, academic and author. He is a Professor and Distinguished Research Chair in Sustainable Biomaterials at the Ontario Agriculture College and is the Director of the Bioproducts Discovery and Development Centre at the University of Guelph.

Michelle Lynn Oyen is an American materials scientist who is a Professor of Biomedical Engineering at Washington University in St. Louis. Her research considers nano indentation and biomimetic materials.

<span class="mw-page-title-main">Plastic degradation by marine bacteria</span> Ability of bacteria to break down plastic polymers

Plastic degradation in marine bacteria describes when certain pelagic bacteria break down polymers and use them as a primary source of carbon for energy. Polymers such as polyethylene(PE), polypropylene (PP), and polyethylene terephthalate (PET) are incredibly useful for their durability and relatively low cost of production, however it is their persistence and difficulty to be properly disposed of that is leading to pollution of the environment and disruption of natural processes. It is estimated that each year there are 9-14 million metric tons of plastic that are entering the ocean due to inefficient solutions for their disposal. The biochemical pathways that allow for certain microbes to break down these polymers into less harmful byproducts has been a topic of study to develop a suitable anti-pollutant.

Sally L. McArthur is an Australian materials scientist who is Professor of Biomedical Engineering at Swinburne University of Technology and Research Scientist at CSIRO. Her research considers the development of novel biomaterials for biomedical, nutritional and environmental applications. She was elected Fellow of the Australian Academy of Technology and Engineering in 2021.

Tatiana Segura is an American biomedical engineer who is a professor at Duke University. Her research considers biomedical engineering solutions to promote cell growth. She was elected Fellow of the American Institute for Medical and Biological Engineering in 2017 and awarded the Acta Biomaterialia Silver Medal in 2021.

References