Isohumulone

Last updated
Isohumulone
IsohumuloneCT.svg
Names
IUPAC name
3,4-Dihydroxy-5-(3-methylbut- 2-enyl)-2-(3-methyl-1-oxobutyl)-4-(4- methyl-1-oxopent-3-enyl)-1- cyclopent-2-enone [1]
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.042.778 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C21H30O5/c1-12(2)7-9-15-19(24)18(16(22)11-14(5)6)20(25)21(15,26)17(23)10-8-13(3)4/h7-8,14-15,25-26H,9-11H2,1-6H3 Yes check.svgY
    Key: QARXXMMQVDCYGZ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C21H30O5/c1-12(2)7-9-15-19(24)18(16(22)11-14(5)6)20(25)21(15,26)17(23)10-8-13(3)4/h7-8,14-15,25-26H,9-11H2,1-6H3
    Key: QARXXMMQVDCYGZ-UHFFFAOYAV
  • O=C(C1(O)C(/O)=C(\C(=O)C1C/C=C(/C)C)C(=O)CC(C)C)C\C=C(/C)C
Properties
C21H30O5
Molar mass 362.466 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Isohumulones are chemical compounds that contribute to the bitter taste of beer and are in the class of compounds known as iso-alpha acids. They are found in hops.

Contents

Beer

The bitterness of beer is measured according to the International Bitterness Units scale, with one IBU corresponding to one part-per-million of isohumulone. When beer is exposed to light, these compounds can decompose in a reaction catalyzed by riboflavin to generate free-radical species by the homolytic cleavage of the exocyclic carbon-carbon bond. The cleaved acyl side-chain radical then decomposes further, expelling carbon monoxide and generating 1,1-dimethylallyl radical. This radical can finally react with sulfur-containing amino acids, such as cysteine, to create 3-methylbut-2-ene-1-thiol, a thiol which causes beer to develop a "skunky" flavor. [2]

Formation

Isohumulones are generated by the isomerization of humulone. [1] [3] [4]

Isomerization of humulone to cis- and trans-isohumulone S-Humulone Isomerization.svg
Isomerization of humulone to cis- and trans-isohumulone

See also

Related Research Articles

Alkyne Acyclic hydrocarbon

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.

Hops Flower used for beer and other alcohol

Hops are the flowers of the hop plant Humulus lupulus, a member of the Cannabaceae family of flowering plants. They are used primarily as a bittering, flavouring, and stability agent in beer, to which, in addition to bitterness, they impart floral, fruity, or citrus flavours and aromas. Hops are also used for various purposes in other beverages and herbal medicine. The hops plants have separate female and male plants, and only female plants are used for commercial production. The hop plant is a vigorous, climbing, herbaceous perennial, usually trained to grow up strings in a field called a hopfield, hop garden, or hop yard when grown commercially. Many different varieties of hops are grown by farmers around the world, with different types used for particular styles of beer.

Ketene

A ketene is an organic compound of the form R′R″C=C=O, where R and R' are two arbitrary monovalent chemical groups. The name may also refer to the specific compound ethenone H
2
C=C=O
, the simplest ketene.

<i>Humulus</i> Genus of flowering plants belonging to the hemp and hackberry family

Humulus, hop, is a small genus of flowering plants in the family Cannabaceae. The hop is native to temperate regions of the Northern Hemisphere. Hops are the female flowers of the hop species H. lupulus; as a main flavor and aroma ingredient in many beer styles, H. lupulus is widely cultivated for use by the brewing industry.

In chemistry, carbonic acid is a dibasic acid with the chemical formula H2CO3. The pure compound decomposes at temperatures greater than ca. −80 °C.

Thiol Any organic compound having a sulfanyl group

A thiol or thiol derivative is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The –SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol", where the first word deriving from Greek θεῖον (theion) meaning "sulfur".

Organosulfur compounds are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature abounds with organosulfur compounds—sulfur is essential for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

Organic peroxide

Organic peroxides are organic compounds containing the peroxide functional group (ROOR′). If the R′ is hydrogen, the compounds are called hydroperoxides, which are discussed in that article. Peresters are the peroxy analog of esters and have general structure RC(O)OOR. The O−O bond of peroxides easily breaks, producing free radicals of the form RO. Thus, organic peroxides are useful as initiators for some types of polymerisation, such as the epoxy resins used in glass-reinforced plastics. MEKP and benzoyl peroxide are commonly used for this purpose. However, the same property also means that organic peroxides can either intentionally or unintentionally initiate explosive polymerisation in materials with unsaturated chemical bonds, and this process has been used in explosives. Organic peroxides, like their inorganic counterparts, are powerful bleaching agents.

A free-radical reaction is any chemical reaction involving free radicals. This reaction type is abundant in organic reactions. Two pioneering studies into free radical reactions have been the discovery of the triphenylmethyl radical by Moses Gomberg (1900) and the lead-mirror experiment described by Friedrich Paneth in 1927. In this last experiment tetramethyllead is decomposed at elevated temperatures to methyl radicals and elemental lead in a quartz tube. The gaseous methyl radicals are moved to another part of the chamber in a carrier gas where they react with lead in a mirror film which slowly disappears.

Sulfuryl chloride Chemical compound

Sulfuryl chloride is an inorganic compound with the formula SO2Cl2. At room temperature, it is a colorless liquid with a pungent odor. Sulfuryl chloride is not found in nature, as can be inferred from its rapid hydrolysis.

Photodegradation

Photodegradation is the alteration of materials by light. Typically, the term refers to the combined action of sunlight and air. Photodegradation is usually oxidation and hydrolysis. Often photodegradation is avoided, since it destroys paintings and other artifacts. It is however partly responsible for remineralization of biomass and is used intentionally in some disinfection technologies. Photodegradation does not apply to how materials may be aged or degraded via infrared light or heat, but does include degradation in all of the ultraviolet light wavebands.

Sulfenic acid

A sulfenic acid is an organosulfur compound and oxoacid with the general formula RSOH. It is the first member of the family of organosulfur oxoacids, which also include sulfinic acids and sulfonic acids, RSO2H and RSO3H, respectively. The base member of the sulfenic acid series with R = H is hydrogen thioperoxide.

Thioacetic acid Chemical compound

Thioacetic acid is an organosulfur compound with the molecular formula CH3COSH. It is a yellow liquid with a strong thiol-like odor. It is used in organic synthesis for the introduction of thiol groups in molecules.

Bleaching of wood pulp is the chemical processing of wood pulp to lighten its color and whiten the pulp. The primary product of wood pulp is paper, for which whiteness is an important characteristic. These processes and chemistry are also applicable to the bleaching of non-wood pulps, such as those made from bamboo or kenaf.

Alpha acid

Alpha acids are a class of chemical compounds primarily of importance to the production of beer. They are found in the resin glands of the flowers of the hop plant and are the source of hop bitterness.

When drinking beer, there are many factors to be considered. Principal among them are bitterness, the variety of flavours present in the beverage and their intensity, alcohol content, and colour. Standards for those characteristics allow a more objective and uniform determination to be made on the overall qualities of any beer.

Humulone Chemical compound

Humulone, a vinylogous type of organic acid, is a bitter-tasting chemical compound found in the resin of mature hops. Humulone is a prevalent member of the class of compounds known as alpha acids, which collectively give hopped beer its characteristic bitter flavor.

Free radical damage to DNA can occur as a result of exposure to ionizing radiation or to radiomimetic compounds. Damage to DNA as a result of free radical attack is called indirect DNA damage because the radicals formed can diffuse throughout the body and affect other organs. Malignant melanoma can be caused by indirect DNA damage because it is found in parts of the body not exposed to sunlight. DNA is vulnerable to radical attack because of the very labile hydrogens that can be abstracted and the prevalence of double bonds in the DNA bases that radicals can easily add to.

The thiol-ene reaction is an organic reaction between a thiol and an alkene to form a thioether. This reaction was first reported in 1905, but it gained prominence in the late 1990s and early 2000s for its feasibility and wide range of applications. This reaction is accepted as a click chemistry reaction given the reactions’ high yield, stereoselectivity, high rate, and thermodynamic driving force.

Beer chemistry Brewery science and beer chemical composition

The chemical compounds in beer give it a distinctive taste, smell and appearance. The majority of compounds in beer come from the metabolic activities of plants and yeast and so are covered by the fields of biochemistry and organic chemistry. The main exception is that beer contains over 90% water and the mineral ions in the water (hardness) can have a significant effect upon the taste.

References

  1. 1 2 Urban, Jan; Dahlberg, Clinton; Carroll, Brian; Kaminsky, Werner (2013). "Absolute Configuration of Beer′s Bitter Compounds". Angew. Chem. Int. Ed. 52 (5): 1553–1555. doi:10.1002/anie.201208450. PMC   3563212 . PMID   23239507.
  2. "UNC chemists figure out what causes 'skunky beer'". eurekalert.org.
  3. Blanco, Carlos A.; Rojas, Antonio; Caballero, Pedro A.; Ronda, Felicidad; Gomez, Manuel; Caballero, Isabel (2006). "A better control of beer properties by predicting acidity of hop iso-α-acids". Trends in Food Science & Technology. 17 (7): 373. doi:10.1016/j.tifs.2005.11.012.
  4. Esslinger, H. M. and Narziss, L. 2003. “Beer.” in Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, 2009 doi : 10.1002/14356007.a03_421