James Marvin Herndon (born 1944) is an American interdisciplinary scientist who earned his BA degree in physics in 1970 from the University of California, San Diego and his Ph.D. degree in nuclear chemistry in 1974 from Texas A&M University. [1] For three years, J. Marvin Herndon was a post-doctoral assistant to Hans Suess and Harold C. Urey in geochemistry and cosmochemistry at the University of California, San Diego. He has been profiled in Current Biography , and dubbed a “maverick geophysicist” by The Washington Post . [2]
Herndon suggested that the composition of the inner core of Earth is nickel silicide; the conventional view is that it is iron–nickel alloy. [3] In 1992, he suggested "georeactor" planetocentric nuclear fission reactors as energy sources for the gas giant outer planets, [4] as the energy source and production mechanism for the geomagnetic field [5] and stellar ignition by nuclear fission. [6] [7] Scientists who have scrutinised these ideas have challenged the underlying assumptions and proposed mechanisms. In a paper on the nuclear reactor hypothesis, Schuiling argues that 'it is unlikely that nuclear georeactors ... are operating at the Earth's centre'. [8]
In 2005, Herndon postulated what he calls whole-earth decompression dynamics, which he describes as a unified theory combining elements of plate tectonics and Earth expansion. He suggests that Earth formed from a Jupiter-sized gas giant by catastrophic loss of its gaseous atmosphere with subsequent decompression and expansion of the rocky remnant planet resulting in decompression cracks at divergent continental margins which are filled in by basalts from mid-ocean ridges. [9] [10] [11] [12] [13]
Recent measurements of "geoneutrino" fluxes in the KamLAND and Borexino experiments have placed stringent upper limits on Herndon's "georeactor" hypothesis on the presence of an active nuclear fission reactor in the Earth's inner core, so that such reactor would produce less than 3 TW. [14]
Herndon has become a proponent of the chemtrail conspiracy theory [15] and published several peer-reviewed papers claiming that coal fly ash is being sprayed for geoengineering. [16] In 2016, two of his papers, however, were retracted because of flaws; [17] [18] [19] Herndon disputed the reason for retraction, claiming the retractions were "a well-organized effort (CIA?) to deceive... Those concerted efforts to cause said retractions prove that the high officials who ordered the spraying know very well that they are poisoning humanity and want to hide that fact". [20]
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. When a fissile nucleus like uranium-235 or plutonium-239 absorbs a neutron, it splits into lighter nuclei, releasing energy, gamma radiation, and free neutrons, which can induce further fission in a self-sustaining chain reaction. The process is carefully controlled using control rods and neutron moderators to regulate the number of neutrons that continue the reaction, ensuring the reactor operates safely, although inherent control by means of delayed neutrons also plays an important role in reactor output control. The efficiency of nuclear fuel is much higher than fossil fuels; the 5% enriched uranium used in the newest reactors has an energy density 120,000 times higher than coal.
A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrogen, is heated to a high temperature in a nuclear reactor and then expands through a rocket nozzle to create thrust. The external nuclear heat source theoretically allows a higher effective exhaust velocity and is expected to double or triple payload capacity compared to chemical propellants that store energy internally.
Nuclear technology is technology that involves the nuclear reactions of atomic nuclei. Among the notable nuclear technologies are nuclear reactors, nuclear medicine and nuclear weapons. It is also used, among other things, in smoke detectors and gun sights.
The chemtrail conspiracy theory is the erroneous belief that long-lasting condensation trails left in the sky by high-flying aircraft are actually "chemtrails" consisting of chemical or biological agents, sprayed for nefarious purposes undisclosed to the general public. Believers in this conspiracy theory say that while normal contrails dissipate relatively quickly, contrails that linger must contain additional substances. Those who subscribe to the theory speculate that the purpose of the chemical release may be solar radiation management, weather modification, psychological manipulation, human population control, biological or chemical warfare, or testing of biological or chemical agents on a population, and that the trails are causing respiratory illnesses and other health problems.
The fission-fragment rocket is a rocket engine design that directly harnesses hot nuclear fission products for thrust, as opposed to using a separate fluid as working mass. The design can, in theory, produce very high specific impulse while still being well within the abilities of current technologies.
Decay heat is the heat released as a result of radioactive decay. This heat is produced as an effect of radiation on materials: the energy of the alpha, beta or gamma radiation is converted into the thermal movement of atoms.
Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.
Fertile material is a material that, although not fissile itself, can be converted into a fissile material by neutron absorption.
Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm and 148Sm, with 152Sm being the most abundant. 146Sm is also fairly long-lived, but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide. It is the longest-lived nuclide that has not yet been confirmed to be primordial.
The expanding Earth or growing Earth was a hypothesis attempting to explain the position and relative movement of continents by increase in the volume of Earth. With the recognition of plate tectonics in 20th century, the idea has been abandoned.
The Molten-Salt Reactor Experiment (MSRE) was an experimental molten-salt reactor research reactor at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. This technology was researched through the 1960s, the reactor was constructed by 1964, it went critical in 1965, and was operated until 1969. The costs of a cleanup project were estimated at $130 million.
The history of scientific thought about the formation and evolution of the Solar System began with the Copernican Revolution. The first recorded use of the term "Solar System" dates from 1704. Since the seventeenth century, philosophers and scientists have been forming hypotheses concerning the origins of the Solar System and the Moon and attempting to predict how the Solar System would change in the future. René Descartes was the first to hypothesize on the beginning of the Solar System; however, more scientists joined the discussion in the eighteenth century, forming the groundwork for later hypotheses on the topic. Later, particularly in the twentieth century, a variety of hypotheses began to build up, including the now–commonly accepted nebular hypothesis.
The liquid fluoride thorium reactor is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based molten (liquid) salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.
Borexino is a deep underground particle physics experiment to study low energy (sub-MeV) solar neutrinos. The detector is the world's most radio-pure liquid scintillator calorimeter and is protected by 3,800 meters of water-equivalent depth. The scintillator is pseudocumene and PPO which is held in place by a thin nylon sphere. It is placed within a stainless steel sphere which holds the photomultiplier tubes (PMTs) used as signal detectors and is shielded by a water tank to protect it against external radiation. Outward pointing PMT's look for any outward facing light flashes to tag incoming cosmic muons that manage to penetrate the overburden of the mountain above. Neutrino energy can be determined through the number of photoelectrons measured in the PMT's. While the position can be determined by extrapolating the difference in arrival times of photons at PMT's throughout the chamber.
Whether nuclear power should be considered a form of renewable energy is an ongoing subject of debate. Statutory definitions of renewable energy usually exclude many present nuclear energy technologies, with the notable exception of the state of Utah. Dictionary-sourced definitions of renewable energy technologies often omit or explicitly exclude mention of nuclear energy sources, with an exception made for the natural nuclear decay heat generated within the Earth.
The Energy Multiplier Module is a nuclear fission power reactor under development by General Atomics. It is a fast-neutron version of the Gas Turbine Modular Helium Reactor (GT-MHR) and is capable of converting spent nuclear fuel into electricity and industrial process heat.
Nuclear power in space is the use of nuclear power in outer space, typically either small fission systems or radioactive decay for electricity or heat. Another use is for scientific observation, as in a Mössbauer spectrometer. The most common type is a radioisotope thermoelectric generator, which has been used on many space probes and on crewed lunar missions. Small fission reactors for Earth observation satellites, such as the TOPAZ nuclear reactor, have also been flown. A radioisotope heater unit is powered by radioactive decay and can keep components from becoming too cold to function, potentially over a span of decades.
In nuclear and particle physics, a geoneutrino is a neutrino or antineutrino emitted during the decay of naturally-occurring radionuclides in the Earth. Neutrinos, the lightest of the known subatomic particles, lack measurable electromagnetic properties and interact only via the weak nuclear force when ignoring gravity. Matter is virtually transparent to neutrinos and consequently they travel, unimpeded, at near light speed through the Earth from their point of emission. Collectively, geoneutrinos carry integrated information about the abundances of their radioactive sources inside the Earth. A major objective of the emerging field of neutrino geophysics involves extracting geologically useful information from geoneutrino measurements. Analysts from the Borexino collaboration have been able to get to 53 events of neutrinos originating from the interior of the Earth.
Nickel silicides include several intermetallic compounds of nickel and silicon. Nickel silicides are important in microelectronics as they form at junctions of nickel and silicon. Additionally thin layers of nickel silicides may have application in imparting surface resistance to nickel alloys.
Almost every day jet airliners are spraying innumerable so-called "chemtrails" and they persist after release behind the jets to gradually form clouds. Chemical clouds. Toxic clouds.