James Marvin Herndon (born 1944) is an American interdisciplinary scientist who earned his BA degree in physics in 1970 from the University of California, San Diego and his Ph.D. degree in nuclear chemistry in 1974 from Texas A&M University. [1] For three years, J. Marvin Herndon was a post-doctoral assistant to Hans Suess and Harold C. Urey in geochemistry and cosmochemistry at the University of California, San Diego. He has been profiled in Current Biography , and dubbed a “maverick geophysicist” by The Washington Post . [2]
Herndon suggested that the composition of the inner core of Earth is nickel silicide; the conventional view is that it is iron–nickel alloy. [3] In 1992, he suggested "georeactor" planetocentric nuclear fission reactors as energy sources for the gas giant outer planets, [4] as the energy source and production mechanism for the geomagnetic field [5] and stellar ignition by nuclear fission. [6] [7] Scientists who have scrutinised these ideas have challenged the underlying assumptions and proposed mechanisms. In a paper on the nuclear reactor hypothesis, Schuiling argues that 'it is unlikely that nuclear georeactors ... are operating at the Earth's centre'. [8]
In 2005, Herndon postulated what he calls whole-earth decompression dynamics, which he describes as a unified theory combining elements of plate tectonics and Earth expansion. He suggests that Earth formed from a Jupiter-sized gas giant by catastrophic loss of its gaseous atmosphere with subsequent decompression and expansion of the rocky remnant planet resulting in decompression cracks at divergent continental margins which are filled in by basalts from mid-ocean ridges. [9] [10] [11] [12]
Recent measurements of "geoneutrino" fluxes in the KamLAND and Borexino experiments have placed stringent upper limits on Herndon's "georeactor" hypothesis on the presence of an active nuclear fission reactor in the Earth's inner core, so that such reactor would produce less than 3 TW. [13]
Herndon has become a proponent of the chemtrail conspiracy theory [14] and published several peer-reviewed papers claiming that coal fly ash is being sprayed for geoengineering. [15] In 2016, two of his papers, however, were retracted because of flaws; [16] [17] [18] Herndon disputed the reason for retraction, claiming the retractions were "a well-organized effort (CIA?) to deceive... Those concerted efforts to cause said retractions prove that the high officials who ordered the spraying know very well that they are poisoning humanity and want to hide that fact". [19]
The neutron is a subatomic particle, symbol
n
or
n0
, that has no electric charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons. Nucleons have a mass of approximately one atomic mass unit, or dalton. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.
A neutrino is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction. They are used for commercial electricity, marine propulsion, weapons production and research. When a fissile nucleus, usually uranium-235 or plutonium-239, absorbs a neutron, it splits into lighter nuclei, releasing energy, gamma radiation, and free neutrons, which can induce further fission in a self-sustaining chain reaction. Reactors stabilize this with systems of active and passive control, varying the presence of neutron absorbers and moderators in the core, maintaining criticality with delayed neutrons. Fuel efficiency is exceptionally high;low-enriched uranium has an energy density 120,000 times higher than coal.
Earth's outer core is a fluid layer about 2,260 km (1,400 mi) thick, composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle. The outer core begins approximately 2,889 km (1,795 mi) beneath Earth's surface is at the core-mantle boundary and ends 5,150 km (3,200 mi) beneath Earth's surface at the inner core boundary.
A natural nuclear fission reactor is a uranium deposit where self-sustaining nuclear chain reactions occur. The idea of a nuclear reactor existing in situ within an ore body moderated by groundwater was briefly explored by Paul Kuroda in 1956. The existence of an extinct or fossil nuclear fission reactor, where self-sustaining nuclear reactions have occurred in the past, are established by analysis of isotope ratios of uranium and of the fission products. The first such fossil reactor was first discovered in 1972 in Oklo, Gabon, by researchers from the French Alternative Energies and Atomic Energy Commission (CEA) when chemists performing quality control for the French nuclear industry noticed sharp depletions of fissile 235
U
in gaseous uranium made from Gabonese ore.
The chemtrail conspiracy theory is the erroneous belief that long-lasting condensation trails left in the sky by high-flying aircraft are actually "chemtrails" consisting of chemical or biological agents, sprayed for nefarious purposes undisclosed to the general public. Believers in this conspiracy theory say that while normal contrails dissipate relatively quickly, contrails that linger must contain additional substances. Those who subscribe to the theory speculate that the purpose of the chemical release may be solar radiation management, weather modification, psychological manipulation, human population control, biological or chemical warfare, or testing of biological or chemical agents on a population, and that the trails are causing respiratory illnesses and other health problems.
Neutrino astronomy is the branch of astronomy that gathers information about astronomical objects by observing and studying neutrinos emitted by them with the help of neutrino detectors in special Earth observatories. It is an emerging field in astroparticle physics providing insights into the high-energy and non-thermal processes in the universe.
The fission-fragment rocket is a rocket engine design that directly harnesses hot nuclear fission products for thrust, as opposed to using a separate fluid as working mass. The design can, in theory, produce very high specific impulse while still being well within the abilities of current technologies.
A solar neutrino is a neutrino originating from nuclear fusion in the Sun's core, and is the most common type of neutrino passing through any source observed on Earth at any particular moment. Neutrinos are elementary particles with extremely small rest mass and a neutral electric charge. They only interact with matter via weak interaction and gravity, making their detection very difficult. This has led to the now-resolved solar neutrino problem. Much is now known about solar neutrinos, but research in this field is ongoing.
Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm and 148Sm, with 152Sm being the most abundant. 146Sm is also fairly long-lived, but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide. It is the longest-lived nuclide that has not yet been confirmed to be primordial.
The expanding Earth or growing Earth was a hypothesis attempting to explain the position and relative movement of continents by increase in the volume of Earth. With the recognition of plate tectonics in 20th century, the idea has been abandoned.
The standard solar model (SSM) is a mathematical model of the Sun as a spherical ball of gas. This stellar model, technically the spherically symmetric quasi-static model of a star, has stellar structure described by several differential equations derived from basic physical principles. The model is constrained by boundary conditions, namely the luminosity, radius, age and composition of the Sun, which are well determined. The age of the Sun cannot be measured directly; one way to estimate it is from the age of the oldest meteorites, and models of the evolution of the Solar System. The composition in the photosphere of the modern-day Sun, by mass, is 74.9% hydrogen and 23.8% helium. All heavier elements, called metals in astronomy, account for less than 2 percent of the mass. The SSM is used to test the validity of stellar evolution theory. In fact, the only way to determine the two free parameters of the stellar evolution model, the helium abundance and the mixing length parameter, are to adjust the SSM to "fit" the observed Sun.
The history of scientific thought about the formation and evolution of the Solar System began with the Copernican Revolution. The first recorded use of the term "Solar System" dates from 1704. Since the seventeenth century, philosophers and scientists have been forming hypotheses concerning the origins of the Solar System and the Moon and attempting to predict how the Solar System would change in the future. René Descartes was the first to hypothesize on the beginning of the Solar System; however, more scientists joined the discussion in the eighteenth century, forming the groundwork for later hypotheses on the topic. Later, particularly in the twentieth century, a variety of hypotheses began to build up, including the now–commonly accepted nebular hypothesis.
A traveling-wave reactor (TWR) is a proposed type of nuclear fission reactor that can convert fertile material into usable fuel through nuclear transmutation, in tandem with the burnup of fissile material. TWRs differ from other kinds of fast-neutron and breeder reactors in their ability to use fuel efficiently without uranium enrichment or reprocessing, instead directly using depleted uranium, natural uranium, thorium, spent fuel removed from light water reactors, or some combination of these materials. The concept is still in the development stage and no TWRs have ever been built.
Borexino is a deep underground particle physics experiment to study low energy (sub-MeV) solar neutrinos. The detector is the world's most radio-pure liquid scintillator calorimeter and is protected by 3,800 meters of water-equivalent depth. The scintillator is pseudocumene and PPO which is held in place by a thin nylon sphere. It is placed within a stainless steel sphere which holds the photomultiplier tubes (PMTs) used as signal detectors and is shielded by a water tank to protect it against external radiation. Outward pointing PMT's look for any outward facing light flashes to tag incoming cosmic muons that manage to penetrate the overburden of the mountain above. Neutrino energy can be determined through the number of photoelectrons measured in the PMT's. While the position can be determined by extrapolating the difference in arrival times of photons at PMT's throughout the chamber.
In nuclear and particle physics, a geoneutrino is a neutrino or antineutrino emitted during the decay of naturally-occurring radionuclides in the Earth. Neutrinos, the lightest of the known subatomic particles, lack measurable electromagnetic properties and interact only via the weak nuclear force when ignoring gravity. Matter is virtually transparent to neutrinos and consequently they travel, unimpeded, at near light speed through the Earth from their point of emission. Collectively, geoneutrinos carry integrated information about the abundances of their radioactive sources inside the Earth. A major objective of the emerging field of neutrino geophysics involves extracting geologically useful information from geoneutrino measurements. Analysts from the Borexino collaboration have been able to get to 53 events of neutrinos originating from the interior of the Earth.
The origin of the Moon is usually explained by a Mars-sized body striking the Earth, creating a debris ring that eventually collected into a single natural satellite, the Moon, but there are a number of variations on this giant-impact hypothesis, as well as alternative explanations, and research continues into how the Moon came to be formed. Other proposed scenarios include captured body, fission, formed together, planetesimal collisions, and collision theories.
The diffuse supernova neutrino background(DSNB) is a theoretical population of neutrinos (and anti-neutrinos) cumulatively originating from all core-collapse supernovae events throughout the history of the universe. Though it has not yet been directly detected, the DSNB is theorized to be isotropic and consists of neutrinos with typical energies on the scale of 107 eV. Current detection efforts are limited by the influence of background noise in the search for DSNB neutrinos and are therefore limited to placing limits on the parameters of the DSNB, namely the neutrino flux. Restrictions on these parameters have gotten more strict in recent years, but many researchers are looking to make direct observations in the near future with next generation detectors. The DSNB is not to be confused with the cosmic neutrino background (CNB), which is comprised by relic neutrinos that were produced during the Big Bang and have much lower energies (10−4 to 10−6 eV).
Nickel silicides include several intermetallic compounds of nickel and silicon. Nickel silicides are important in microelectronics as they form at junctions of nickel and silicon. Additionally thin layers of nickel silicides may have application in imparting surface resistance to nickel alloys.
Almost every day jet airliners are spraying innumerable so-called "chemtrails" and they persist after release behind the jets to gradually form clouds. Chemical clouds. Toxic clouds.