This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
In software design, the Java Native Interface (JNI) is a foreign function interface programming framework that enables Java code running in a Java virtual machine (JVM) to call and be called by [1] native applications (programs specific to a hardware and operating system platform) and libraries written in other languages such as C, C++ and assembly.
JNI enables programmers to write native methods to handle situations when an application cannot be written entirely in the Java programming language, e.g. when the standard Java class library does not support the platform-specific features or program library. It is also used to modify an existing application (written in another programming language) to be accessible to Java applications. Many of the standard library classes depend on JNI to provide functionality to the developer and the user, e.g. file I/O and sound capabilities. Including performance- and platform-sensitive API implementations in the standard library allows all Java applications to access this functionality in a safe and platform-independent manner.
The JNI framework lets a native method use Java objects in the same way that Java code uses these objects. A native method can create Java objects and then inspect and use these objects to perform its tasks. A native method can also inspect and use objects created by Java application code.
Only applications and signed applets can invoke JNI.
An application that relies on JNI loses the platform portability Java offers (a partial workaround is to write a separate implementation of JNI code for each platform and have Java detect the operating system and load the correct one at runtime).
Not only can native code interface with Java, it can also draw on a Java Canvas
, which is possible with the Java AWT Native Interface. The process is almost the same, with just a few changes. The Java AWT Native Interface is only available since J2SE 1.3.
JNI also allows direct access to assembly code, without even going through a C bridge. [2] Accessing Java applications from assembly is possible in the same way. [3]
In the JNI framework, native functions are implemented in separate .c or .cpp files. (C++ provides a slightly simpler interface with JNI.) When the JVM invokes the function, it passes a JNIEnv
pointer, a jobject
pointer, and any Java arguments declared by the Java method. For example, the following converts a Java string to a native string:
extern"C"JNIEXPORTvoidJNICALLJava_ClassName_MethodName(JNIEnv*env,jobjectobj,jstringjavaString){constchar*nativeString=env->GetStringUTFChars(javaString,0);//Do something with the nativeStringenv->ReleaseStringUTFChars(javaString,nativeString);}
The env
pointer is a structure that contains the interface to the JVM. It includes all of the functions necessary to interact with the JVM and to work with Java objects. Example JNI functions are converting native arrays to/from Java arrays, converting native strings to/from Java strings, instantiating objects, throwing exceptions, etc. Basically, anything that Java code can do can be done using JNIEnv
, albeit with considerably less ease.
The argument obj
is a reference to the Java object inside which this native method has been declared.
Native data types can be mapped to/from Java data types. For compound types such as objects, arrays and strings the native code must explicitly convert the data by calling methods in the JNIEnv
.
A JNI environment pointer (JNIEnv*) is passed as an argument for each native function mapped to a Java method, allowing for interaction with the JNI environment within the native method. This JNI interface pointer can be stored, but remains valid only in the current thread. Other threads must first call AttachCurrentThread() to attach themselves to the VM and obtain a JNI interface pointer. Once attached, a native thread works like a regular Java thread running within a native method. The native thread remains attached to the VM until it calls DetachCurrentThread() to detach itself. [4]
The JNI framework does not provide any automatic garbage collection for non-JVM memory resources allocated by code executing on the native side. Consequently, native side code (such as assembly language) assumes the responsibility for explicitly releasing any such memory resources that the native code acquires.
On Linux and Solaris platforms, if the native code registers itself as a signal handler, it could intercept signals intended for the JVM. A chain of responsibility can be used to allow native code to better inter-operate with the JVM. On Windows platforms, Structured Exception Handling (SEH) may be employed to wrap native code in SEH try/catch blocks so as to capture machine (CPU/FPU) generated software interrupts (such as NULL pointer access violations and divide-by-zero operations), and to handle these situations before the interrupt is propagated back up into the JVM (i.e. Java side code), in all likelihood resulting in an unhandled exception.[ original research? ]
The encoding used for the NewStringUTF, GetStringUTFLength, GetStringUTFChars, ReleaseStringUTFChars and GetStringUTFRegion functions is "modified UTF-8", [5] which is not valid UTF-8 for all inputs, but a different encoding really. The null character (U+0000) and codepoints not on the Basic Multilingual Plane (greater than or equal to U+10000, i.e. those represented as surrogate pairs in UTF-16) are encoded differently in modified UTF-8. Many programs actually use these functions incorrectly and treat the UTF-8 strings returned or passed into the functions as standard UTF-8 strings instead of modified UTF-8 strings. Programs should use the NewString, GetStringLength, GetStringChars, ReleaseStringChars, GetStringRegion, GetStringCritical and ReleaseStringCritical functions, which use UTF-16LE encoding on little-endian architectures and UTF-16BE on big-endian architectures, and then use a UTF-16 to UTF-8 conversion routine.[ original research? ]
The following table shows the mapping of types between Java (JNI) and native code.
C Type | Java Language Type | Description | Type signature |
---|---|---|---|
unsigned char uint8_t | jboolean | unsigned 8 bits | Z |
signed char int8_t | jbyte | signed 8 bits | B |
unsigned short uint16_t | jchar | unsigned 16 bits | C |
short int16_t | jshort | signed 16 bits | S |
int int32_t | jint | signed 32 bits | I |
long long int64_t | jlong | signed 64 bits | J |
float | jfloat | 32 bits | F |
double | jdouble | 64 bits | D |
void | V |
In addition, the signature "L fully-qualified-class ;"
would mean the class uniquely specified by that name; e.g., the signature "Ljava/lang/String;"
refers to the class java.lang.String
. Also, prefixing [
to the signature makes the array of that type; for example, [I
means the int array type. Finally, a void
signature uses the V
code.
These types are interchangeable. One can use jint
where you normally use an int
, and vice versa, without any typecasting required. However, mapping between Java Strings and arrays to native strings and arrays is different. If a jstring
is used where a char *
would be, the code could crash the JVM.[ original research? ]
JNI incurs considerable overhead and performance loss under certain circumstances: [6]
Microsoft's proprietary implementation of a Java Virtual Machine (Visual J++) had a similar mechanism for calling native code from Java, called the Raw Native Interface (RNI). In addition, it had an easy way to call existing native code that was not itself aware of Java, such as (but not limited to) the Windows API, called J/Direct. However, following the Sun–Microsoft litigation about this implementation, Visual J++ is no longer maintained.
RNI was less clumsy to use than JNI, because no bookkeeping with a Java environment pointer was needed. Instead, all Java objects could be accessed directly. To facilitate this, a tool was used that generated header files from Java classes. Similarly, J/Direct was easier to use than using the necessary intermediate native library and JNI.
Java Native Access (JNA) is a community-developed library that provides Java programers easy access to native shared libraries without using JNI. However, this requires the redistribution of the dependent jar library. The tradeoff is between JNI being harder to code and JNA being slower. [7] JNI is built in to core Java.
Java is a high-level, class-based, object-oriented programming language that is designed to have as few implementation dependencies as possible. It is a general-purpose programming language intended to let programmers write once, run anywhere (WORA), meaning that compiled Java code can run on all platforms that support Java without the need to recompile. Java applications are typically compiled to bytecode that can run on any Java virtual machine (JVM) regardless of the underlying computer architecture. The syntax of Java is similar to C and C++, but has fewer low-level facilities than either of them. The Java runtime provides dynamic capabilities that are typically not available in traditional compiled languages.
A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages that are also compiled to Java bytecode. The JVM is detailed by a specification that formally describes what is required in a JVM implementation. Having a specification ensures interoperability of Java programs across different implementations so that program authors using the Java Development Kit (JDK) need not worry about idiosyncrasies of the underlying hardware platform.
Java Platform, Standard Edition is a computing platform for development and deployment of portable code for desktop and server environments. Java SE was formerly known as Java 2 Platform, Standard Edition (J2SE).
Java and C++ are two prominent object-oriented programming languages. By many language popularity metrics, the two languages have dominated object-oriented and high-performance software development for much of the 21st century, and are often directly compared and contrasted. Java's syntax was based on C/C++.
D, also known as dlang, is a multi-paradigm system programming language created by Walter Bright at Digital Mars and released in 2001. Andrei Alexandrescu joined the design and development effort in 2007. Though it originated as a re-engineering of C++, D is a profoundly different language —features of D can be considered streamlined and expanded-upon ideas from C++, however D also draws inspiration from other high-level programming languages, notably Java, Python, Ruby, C#, and Eiffel.
This article compares two programming languages: C# with Java. While the focus of this article is mainly the languages and their features, such a comparison will necessarily also consider some features of platforms and libraries. For a more detailed comparison of the platforms, see Comparison of the Java and .NET platforms.
A Java class file is a file containing Java bytecode that can be executed on the Java Virtual Machine (JVM). A Java class file is usually produced by a Java compiler from Java programming language source files containing Java classes. If a source file has more than one class, each class is compiled into a separate class file.
The syntax of Java is the set of rules defining how a Java program is written and interpreted.
Java AWT Native Interface (jawt) is an interface for the Java programming language that enables rendering libraries compiled to native code to draw directly to a Java Abstract Window Toolkit (AWT) Canvas
object drawing surface.
A foreign function interface (FFI) is a mechanism by which a program written in one programming language can call routines or make use of services written or compiled in another one. An FFI is often used in contexts where calls are made into binary dynamic-link library.
Platform Invocation Services, commonly referred to as P/Invoke, is a feature of Common Language Infrastructure implementations, like Microsoft's Common Language Runtime, that enables managed code to call native code.
Application virtualization software refers to both application virtual machines and software responsible for implementing them. Application virtual machines are typically used to allow application bytecode to run portably on many different computer architectures and operating systems. The application is usually run on the computer using an interpreter or just-in-time compilation (JIT). There are often several implementations of a given virtual machine, each covering a different set of functions.
The Java programming language and Java software platform have been criticized for design choices including the implementation of generics, forced object-oriented programming, the handling of unsigned numbers, the implementation of floating-point arithmetic, and a history of security vulnerabilities in the primary Java VM implementation, HotSpot. Software written in Java, especially its early versions, has been criticized for its performance compared to software written in other programming languages. Developers have also remarked that differences in various Java implementations must be taken into account when writing complex Java programs that must work with all of them.
In software development, the programming language Java was historically considered slower than the fastest 3rd generation typed languages such as C and C++. The main reason being a different language design, where after compiling, Java programs run on a Java virtual machine (JVM) rather than directly on the computer's processor as native code, as do C and C++ programs. Performance was a matter of concern because much business software has been written in Java after the language quickly became popular in the late 1990s and early 2000s.
Vala is an object-oriented programming language with a self-hosting compiler that generates C code and uses the GObject system.
This article compares a large number of programming languages by tabulating their data types, their expression, statement, and declaration syntax, and some common operating-system interfaces.
Java Native Access (JNA) is a community-developed library that provides Java programs easy access to native shared libraries without using the Java Native Interface (JNI). JNA's design aims to provide native access in a natural way with a minimum of effort. Unlike JNI, no boilerplate or generated glue code is required.
Component Object Model (COM) is a binary-interface standard for software components introduced by Microsoft in 1993. It is used to enable inter-process communication object creation in a large range of programming languages. COM is the basis for several other Microsoft technologies and frameworks, including OLE, OLE Automation, Browser Helper Object, ActiveX, COM+, DCOM, the Windows shell, DirectX, UMDF and Windows Runtime. The essence of COM is a language-neutral way of implementing objects that can be used in environments different from the one in which they were created, even across machine boundaries. For well-authored components, COM allows reuse of objects with no knowledge of their internal implementation, as it forces component implementers to provide well-defined interfaces that are separated from the implementation. The different allocation semantics of languages are accommodated by making objects responsible for their own creation and destruction through reference-counting. Type conversion casting between different interfaces of an object is achieved through the QueryInterface
method. The preferred method of "inheritance" within COM is the creation of sub-objects to which method "calls" are delegated.
Windows Runtime (WinRT) is a platform-agnostic component and application architecture first introduced in Windows 8 and Windows Server 2012 in 2012. It is implemented in C++ and officially supports development in C++, Rust/WinRT, Python/WinRT, JavaScript-TypeScript, and the managed code languages C# and Visual Basic .NET (VB.NET).
Kotlin is a cross-platform, statically typed, general-purpose high-level programming language with type inference. Kotlin is designed to interoperate fully with Java, and the JVM version of Kotlin's standard library depends on the Java Class Library, but type inference allows its syntax to be more concise. Kotlin mainly targets the JVM, but also compiles to JavaScript or native code via LLVM. Language development costs are borne by JetBrains, while the Kotlin Foundation protects the Kotlin trademark.