Jean A. Larson

Last updated
  1. "Jean A. Larson » University of Florida". people.clas.ufl.edu. Retrieved 2018-02-17.
  2. 1 2 3 4 Miller, Carrie (2003-01-21). "UF's Larson is a consensus builder". The Gainesville Sun. Retrieved 2018-02-11.
  3. 1 2 Jean A. Larson at the Mathematics Genealogy Project
  4. 1 2 "Jean A. Larson CV" (PDF). people.clas.ufl.edu. Retrieved 2018-02-17.
  5. Foreman, Matthew; Kanamori, Akihiro (2010), Handbook of Set Theory, Dordrecht: Springer, p. 69, doi:10.1007/978-1-4020-5764-9, ISBN   978-1-4020-4843-2, MR   2768678
  6. Larson's author profile on MathSciNet, accessed 2018-02-10.
  7. Erdős Colloquium, University of Florida Department of Mathematics, retrieved 2017-02-11
  8. Batten, Lynn Margaret; Beutelspacher, Albrecht (1993), The theory of finite linear spaces: Combinatorics of points and lines, Cambridge: Cambridge University Press, p. 66, doi:10.1017/CBO9780511666919, ISBN   0-521-33317-2, MR   1253067
  9. Betten, Anton; Betten, Dieter (2010), "There is no Drake/Larson linear space on 30 points", Journal of Combinatorial Designs, 18 (1): 48–70, doi:10.1002/jcd.20231, MR   2584403, S2CID   120886087
Jean A. Larson
Jean A. Larson.jpg
Academic background
Alma mater University of California, Berkeley,
Dartmouth College
Doctoral advisorJames Earl Baumgartner
InfluencesJohn W. Addison Jr.

Related Research Articles

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.

<span class="mw-page-title-main">Discrete mathematics</span> Study of discrete mathematical structures

Discrete mathematics is the study of mathematical structures that can be considered "discrete" rather than "continuous". Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets. However, there is no exact definition of the term "discrete mathematics".

<span class="mw-page-title-main">Erdős–Ko–Rado theorem</span> Upper bound on intersecting set families

In mathematics, the Erdős–Ko–Rado theorem limits the number of sets in a family of sets for which every two sets have at least one element in common. Paul Erdős, Chao Ko, and Richard Rado proved the theorem in 1938, but did not publish it until 1961. It is part of the field of combinatorics, and one of the central results of extremal set theory.

Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones.

Combinatorics is a branch of mathematics concerning the study of finite or countable discrete structures.

<span class="mw-page-title-main">Richard Rado</span> British mathematician

Richard Rado FRS was a German-born British mathematician whose research concerned combinatorics and graph theory. He was Jewish and left Germany to escape Nazi persecution. He earned two PhDs: in 1933 from the University of Berlin, and in 1935 from the University of Cambridge. He was interviewed in Berlin by Lord Cherwell for a scholarship given by the chemist Sir Robert Mond which provided financial support to study at Cambridge. After he was awarded the scholarship, Rado and his wife left for the UK in 1933. He was appointed Professor of Mathematics at the University of Reading in 1954 and remained there until he retired in 1971.

<span class="mw-page-title-main">Ben Green (mathematician)</span> British mathematician (born 1977)

Ben Joseph Green FRS is a British mathematician, specialising in combinatorics and number theory. He is the Waynflete Professor of Pure Mathematics at the University of Oxford.

<span class="mw-page-title-main">Arthur Rubin</span> American mathematician

Arthur Leonard Rubin is an American mathematician and aerospace engineer. He was named a Putnam Fellow on four consecutive occasions from 1970 to 1973.

<span class="mw-page-title-main">James Earl Baumgartner</span> American logician (1943–2011)

James Earl Baumgartner was an American mathematician who worked in set theory, mathematical logic and foundations, and topology.

<span class="mw-page-title-main">Algebraic combinatorics</span> Area of combinatorics

Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra, notably group theory and representation theory, in various combinatorial contexts and, conversely, applies combinatorial techniques to problems in algebra.

In mathematics, infinitary combinatorics, or combinatorial set theory, is an extension of ideas in combinatorics to infinite sets. Some of the things studied include continuous graphs and trees, extensions of Ramsey's theorem, and Martin's axiom. Recent developments concern combinatorics of the continuum and combinatorics on successors of singular cardinals.

In mathematical set theory, an ω-Jónsson function for a set x of ordinals is a function with the property that, for any subset y of x with the same cardinality as x, the restriction of to is surjective on . Here denotes the set of strictly increasing sequences of members of , or equivalently the family of subsets of with order type , using a standard notation for the family of subsets with a given order type. Jónsson functions are named for Bjarni Jónsson.

András Hajnal was a professor of mathematics at Rutgers University and a member of the Hungarian Academy of Sciences known for his work in set theory and combinatorics.

<span class="mw-page-title-main">Michel Deza</span>

Michel Marie Deza was a Soviet and French mathematician, specializing in combinatorics, discrete geometry and graph theory. He was the retired director of research at the French National Centre for Scientific Research (CNRS), the vice president of the European Academy of Sciences, a research professor at the Japan Advanced Institute of Science and Technology, and one of the three founding editors-in-chief of the European Journal of Combinatorics.

In the mathematical theory of infinite graphs, the Erdős–Dushnik–Miller theorem is a form of Ramsey's theorem stating that every infinite graph contains either a countably infinite independent set, or a clique with the same cardinality as the whole graph.

In computability theory, computational complexity theory and proof theory, a fast-growing hierarchy is an ordinal-indexed family of rapidly increasing functions fα: NN. A primary example is the Wainer hierarchy, or Löb–Wainer hierarchy, which is an extension to all α < ε0. Such hierarchies provide a natural way to classify computable functions according to rate-of-growth and computational complexity.

This is a glossary of terms and definitions related to the topic of set theory.

<span class="mw-page-title-main">Tamar Ziegler</span> Israeli mathematician

Tamar Debora Ziegler is an Israeli mathematician known for her work in ergodic theory, combinatorics and number theory. She holds the Henry and Manya Noskwith Chair of Mathematics at the Einstein Institute of Mathematics at the Hebrew University.

<span class="mw-page-title-main">József Solymosi</span> Hungarian-Canadian mathematician

József Solymosi is a Hungarian-Canadian mathematician and a professor of mathematics at the University of British Columbia. His main research interests are arithmetic combinatorics, discrete geometry, graph theory, and combinatorial number theory.