John P. Hussman Institute for Human Genomics

Last updated

The John P. Hussman Institute for Human Genomics (HIHG) is a genome center at the University of Miami's Leonard M. Miller School of Medicine in Miami, Florida.

The institute was established in January 2007 with the goal of discovering genetic influences on human health and applying this knowledge to medical practice. It is listed as one of the top 20 genome centers in the world by DNA sequencing capacity. [1] It is named after John Hussman, a hedge fund manager. [2]

Related Research Articles

<span class="mw-page-title-main">Craig Venter</span> American biotechnologist and businessman

John Craig Venter is an American biotechnologist and businessman. He is known for leading one of the first draft sequences of the human genome and assembled the first team to transfect a cell with a synthetic chromosome. Venter founded Celera Genomics, the Institute for Genomic Research (TIGR) and the J. Craig Venter Institute (JCVI). He was the co-founder of Human Longevity Inc. and Synthetic Genomics. He was listed on Time magazine's 2007 and 2008 Time 100 list of the most influential people in the world. In 2010, the British magazine New Statesman listed Craig Venter at 14th in the list of "The World's 50 Most Influential Figures 2010". In 2012, Venter was honored with Dan David Prize for his contribution to genome research. He was elected to the American Philosophical Society in 2013. He is a member of the USA Science and Engineering Festival's advisory board.

<span class="mw-page-title-main">Human genome</span> Complete set of nucleic acid sequences for humans

The human genome is a complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as the nuclear genome and the mitochondrial genome. Human genomes include both protein-coding DNA sequences and various types of DNA that does not encode proteins. The latter is a diverse category that includes DNA coding for non-translated RNA, such as that for ribosomal RNA, transfer RNA, ribozymes, small nuclear RNAs, and several types of regulatory RNAs. It also includes promoters and their associated gene-regulatory elements, DNA playing structural and replicatory roles, such as scaffolding regions, telomeres, centromeres, and origins of replication, plus large numbers of transposable elements, inserted viral DNA, non-functional pseudogenes and simple, highly repetitive sequences. Introns make up a large percentage of non-coding DNA. Some of this non-coding DNA is non-functional junk DNA, such as pseudogenes, but there is no firm consensus on the total amount of junk DNA.

<span class="mw-page-title-main">Genomics</span> Discipline in genetics

Genomics is an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dimensional structural configuration. In contrast to genetics, which refers to the study of individual genes and their roles in inheritance, genomics aims at the collective characterization and quantification of all of an organism's genes, their interrelations and influence on the organism. Genes may direct the production of proteins with the assistance of enzymes and messenger molecules. In turn, proteins make up body structures such as organs and tissues as well as control chemical reactions and carry signals between cells. Genomics also involves the sequencing and analysis of genomes through uses of high throughput DNA sequencing and bioinformatics to assemble and analyze the function and structure of entire genomes. Advances in genomics have triggered a revolution in discovery-based research and systems biology to facilitate understanding of even the most complex biological systems such as the brain.

<span class="mw-page-title-main">Genome project</span>

Genome projects are scientific endeavours that ultimately aim to determine the complete genome sequence of an organism and to annotate protein-coding genes and other important genome-encoded features. The genome sequence of an organism includes the collective DNA sequences of each chromosome in the organism. For a bacterium containing a single chromosome, a genome project will aim to map the sequence of that chromosome. For the human species, whose genome includes 22 pairs of autosomes and 2 sex chromosomes, a complete genome sequence will involve 46 separate chromosome sequences.

<span class="mw-page-title-main">BGI Group</span> Chinese genome sequencing company

BGI Group, formerly Beijing Genomics Institute, is a Chinese genomics company with headquarters in Yantian District, Shenzhen. The company was originally formed in 1999 as a genetics research center to participate in the Human Genome Project. It also sequences the genomes of other animals, plants and microorganisms.

<span class="mw-page-title-main">Marco Marra</span> Canadian geneticist

Marco A. Marra is a Distinguished Scientist and Director of Canada's Michael Smith Genome Sciences Centre at the BC Cancer Research Centre and Professor of Medical Genetics at the University of British Columbia (UBC). He also serves as UBC Canada Research Chair in Genome Science for the Canadian Institutes of Health Research and is an inductee in the Canadian Medical Hall of Fame. Marra has been instrumental in bringing genome science to Canada by demonstrating the pivotal role that genomics can play in human health and disease research.

<span class="mw-page-title-main">J. Craig Venter Institute</span> Non-profit genomics research institute

The J. Craig Venter Institute (JCVI) is a non-profit genomics research institute founded by J. Craig Venter, Ph.D. in October 2006. The institute was the result of consolidating four organizations: the Center for the Advancement of Genomics, The Institute for Genomic Research (TIGR), the Institute for Biological Energy Alternatives, and the J. Craig Venter Science Foundation Joint Technology Center. It has facilities in Rockville, Maryland and San Diego, California.

<span class="mw-page-title-main">National Human Genome Research Institute</span> Institute of the National Institutes of Health, located in Bethesda, Maryland, US

The National Human Genome Research Institute (NHGRI) is an institute of the National Institutes of Health, located in Bethesda, Maryland.

<span class="mw-page-title-main">Wellcome Sanger Institute</span> British genomics research institute

The Wellcome Sanger Institute, previously known as The Sanger Centre and Wellcome Trust Sanger Institute, is a non-profit British genomics and genetics research institute, primarily funded by the Wellcome Trust.

<span class="mw-page-title-main">Human Genome Project</span> Human genome sequencing programme

The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a physical and a functional standpoint. It started in 1990 and was completed in 2003. It remains the world's largest collaborative biological project. Planning for the project started after it was adopted in 1984 by the US government, and it officially launched in 1990. It was declared complete on April 14, 2003, and included about 92% of the genome. Level "complete genome" was achieved in May 2021, with a remaining only 0.3% bases covered by potential issues. The final gapless assembly was finished in January 2022.

The Cancer Genome Atlas (TCGA) is a project to catalogue the genetic mutations responsible for cancer using genome sequencing and bioinformatics. The overarching goal was to apply high-throughput genome analysis techniques to improve the ability to diagnose, treat, and prevent cancer through a better understanding of the genetic basis of the disease.

Personal genomics or consumer genetics is the branch of genomics concerned with the sequencing, analysis and interpretation of the genome of an individual. The genotyping stage employs different techniques, including single-nucleotide polymorphism (SNP) analysis chips, or partial or full genome sequencing. Once the genotypes are known, the individual's variations can be compared with the published literature to determine likelihood of trait expression, ancestry inference and disease risk.

Population genomics is the large-scale comparison of DNA sequences of populations. Population genomics is a neologism that is associated with population genetics. Population genomics studies genome-wide effects to improve our understanding of microevolution so that we may learn the phylogenetic history and demography of a population.

<span class="mw-page-title-main">Whole genome sequencing</span> Determining nearly the entirety of the DNA sequence of an organisms genome at a single time

Whole genome sequencing (WGS), also known as full genome sequencing, complete genome sequencing, or entire genome sequencing, is the process of determining the entirety, or nearly the entirety, of the DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast.

John Peter Hussman, is an American philanthropist, economist, and hedge fund manager.

Cancer genome sequencing is the whole genome sequencing of a single, homogeneous or heterogeneous group of cancer cells. It is a biochemical laboratory method for the characterization and identification of the DNA or RNA sequences of cancer cell(s).

<span class="mw-page-title-main">McDonnell Genome Institute</span>

McDonnell Genome Institute at Washington University in St. Louis, Missouri, is one of three NIH funded large-scale sequencing centers in the United States. Affiliated with Washington University School of Medicine and the Alvin J. Siteman Cancer Center, the McDonnell Genome Institute is creating, testing and implementing new approaches to the study of genomics with the goal of understanding human health and disease, as well as evolution and the biology of other organisms.

Richard K. Wilson is a leading American molecular geneticist. He is the founding Executive Director of the Institute for Genomic Medicine at Nationwide Children’s Hospital and Professor of Pediatrics at the Ohio State University College of Medicine. He received his A.B. degree (Microbiology) from Miami University in Ohio in 1981, his Ph.D. (Chemistry) from the University of Oklahoma in 1986, and was a Research Fellow in the Division of Biology at the California Institute of Technology (1986-1990). In 1990, Dr. Wilson joined the faculty of Washington University School of Medicine where he co-founded the Genome Sequencing Center/McDonnell Genome Institute. At Washington University, Dr. Wilson was the Alan A. and Edith L. Wolff Distinguished Professor of Medicine, Professor of Genetics, Professor of Molecular Microbiology, and a member of the Senior Leadership Committee of the Siteman Cancer Center.

<span class="mw-page-title-main">John Quackenbush</span> American bioinformatician

John Quackenbush is an American computational biologist and genome scientist. He is a professor of biostatistics and computational biology and a professor of cancer biology at the Dana–Farber Cancer Institute (DFCI), as well as the director of its Center for Cancer Computational Biology (CCCB). Quackenbush also holds an appointment as a professor of computational biology and bioinformatics in the Department of Biostatistics at the Harvard School of Public Health.

In genetics, coverage is one of several measures of the depth or completeness of DNA sequencing, and is more specifically expressed in any of the following terms:

References

  1. Loman, Nick. "Genomics: High-throughput "Next-Generation" Sequencing Facilities Statistics" . Retrieved 12 May 2011.
  2. "John P. Hussman, Ph.D., MS.Ed". Hussman Foundation. 2018.

25°47′23″N80°12′39″W / 25.789696°N 80.210726°W / 25.789696; -80.210726