Josephson junction count

Last updated
Photograph of the D-Wave TwoX "Washington" quantum annealing processor chip mounted and wire-bonded in a sample holder. This chip was introduced in 2015 and includes 128,472 Josephson junctions. D-Wave-Washington-1000Q.jpg
Photograph of the D-Wave TwoX "Washington" quantum annealing processor chip mounted and wire-bonded in a sample holder. This chip was introduced in 2015 and includes 128,472 Josephson junctions.

The Josephson junction count is the number of Josephson junctions on a superconducting integrated circuit chip. Josephson junctions are active circuit elements in superconducting circuits. The Josephson junction count is a measure of circuit or device complexity, similar to the transistor count used for semiconductor integrated circuits.

Contents

Examples of circuits using Josephson junctions include digital circuits based on SFQ logic (e.g., RSFQ, RQL, adiabatic quantum flux parametron), superconducting quantum computing circuits, superconducting analog circuits, etc.

Integrated circuits

The superconducting integrated circuits listed here must have been fabricated and tested, but are not required to be commercially available. Chip area includes the full extent of the chip.

ReferenceDescriptionJunction
count
DateMakerProcessCircuit
[mm²]
Chip
[mm²]
[1] RSFQ NOT gate 131987 Moscow State U. 10  μm, 5 MA/m2, 2 Nb 1.1 ?
CORE1α6 [2] RSFQ microprocessor, 8 bit 6,3192004 NEC 2 μm, 25 MA/m210.9 ?
SCRAM2 [3] RSFQ microprocessor, 8 bit8,1972006SRL2 μm, 25 MA/m215.325
CORE1γ [4] RSFQ microprocessor, 8 bit22,3022007ISTEC2 μm, 25 MA/m240.4564
Rainier [5] RSFQ, 128 qubit QA processor23,3602010 D-Wave, SVTC 250  nm, 2.5 MA/m2, [6] 6 Nb832
Vesuvius SFQ, 512 qubit QA processor96,0002012 D-Wave, SVTC 250 nm, 2.5 MA/m2, 6 Nb8162
[7] RSFQ, 16-bit adder12,7852012 SBU, AIST1 μm, 100 MA/m2, 10 Nb8.529.75
[8] 8,192 bit shift register 32,8002014 SBU, MIT-LL 500 nm, 100 MA/m2, 8 Nb925
Washington (W1K)SFQ, 2048 qubit QA processor128,4722015 D-Wave, Cypress 250 nm, 2.5 MA/m2, 6 Nb30.3136
[9] RQL, 2 shift registers72,8002015 NGC, MIT-LL 500 nm, 100 MA/m2, 8 Nb925
[10] 16000 bit shift register65,0002017SBU, MIT-LL500 nm, 100 MA/m2, 8 Nb1225
[10] 36000 bit shift register144,0002017SBU, MIT-LL350 nm, 100 MA/m2, 8 Nb1525
[10] 202280 bit shift register809,1502017SBU, MIT-LL350 nm, 100 MA/m2, 8 Nb64100
Pegasus P16 SFQ, 5640 qubit QA processor1,030,0002020 D-Wave, SkyWater Technology250 nm, 2.5 MA/m2, 6 Nb70.6 ?

Maker column may include organizations that designed and fabricated the chip.

Process column information: minimum linewidth, Josephson junction critical current density, superconducting layer number and materials. Conversions for units of critical current density: 1 MA/m2 = 1 μA/μm2 = 100 A/cm2.

Memory

Memory is an electronic data storage device, often used as computer memory, on a single integrated circuit chip. The superconducting integrated circuits listed here must have been fabricated and tested, but are not required to be commercially available. Chip area includes the full extent of the chip.

ReferenceDescriptionJunction
count
DateMakerProcessCircuit
[mm²]
Chip
[mm²]
[11] 1024 bit ROM, NbN/MgO/NbN junctions5,9431990Electrotechnical Lab, Japan3 μm, 5.6 MA/m2, 2 Nb + 1 Pb-In ?17.25
[12] 4096 bit RAM 23,4882005ISTEC1 μm, 100 MA/m2, 10 Nb5.5 ?

References

  1. Koshelets V, Likharev K, Migulin V, Mukhanov O, Ovsyannikov G, Semenov V, Serpuchenko I, Vystavkin A (1987). "Experimental realization of a resistive single flux quantum logic circuit". IEEE Trans. Magn. 23 (2): 755–758. Bibcode:1987ITM....23..755K. doi:10.1109/TMAG.1987.1064953.
  2. Tanaka M, Kondo T, Nakajima N, Kawamoto T, Yamanashi Y, Kamiya Y, Akimoto A, Fujimaki A, Hayakawa H, Yoshikawa N, Terai H, Hashimoto Y, Yorozu S (2005). "Demonstration of a single-flux-quantum microprocessor using passive transmission lines". IEEE Trans. Appl. Supercond. 15 (2): 400–404. Bibcode:2005ITAS...15..400T. doi:10.1109/TASC.2005.849860. hdl: 10131/899 . S2CID   21115527.
  3. Nobumori Y, Nishigai T, Nakamiya K, Yoshikawa N, Fujimaki A, Terai H, Yorozu S (2007). "Design and Implementation of a Fully Asynchronous SFQ Microprocessor: SCRAM2". IEEE Trans. Appl. Supercond. 17 (2): 478–481. Bibcode:2007ITAS...17..478N. doi:10.1109/TASC.2007.898658. hdl: 10131/4241 . S2CID   42842976.
  4. Tanaka M, Yamanashi Y, Irie N, Park HJ, Iwasaki S, Takagi K, Taketomi K, Fujimaki A, Yoshikawa N, Terai H, Yorozu S (2007). "Design and implementation of a pipelined 8 bit-serial single-flux-quantum microprocessor with cache memories". Supercond. Sci. Technol. 20 (11): S305 –S309. Bibcode:2007SuScT..20S.305T. doi:10.1088/0953-2048/20/11/S01. S2CID   121079166.
  5. Johnson MW, Bunyk P, Maibaum F, Tolkacheva E, Berkley AJ, Chapple EM, Harris R, Johansson J, Lanting T, Perminov I, Ladizinsky E, Oh T, Rose G (2010). "A scalable control system for a superconducting adiabatic quantum optimization processor". Supercond. Sci. Technol. 23 (6): 065004. arXiv: 0907.3757 . Bibcode:2010SuScT..23f5004J. doi:10.1088/0953-2048/23/6/065004. S2CID   16656122.
  6. Bunyk PI, Hoskinson EM, Johnson MW, Tolkacheva E, Altomare F, Berkley AJ, Harris R, Hilton JP, Lanting T, Przybysz AJ, Whittaker J (2014). "Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor". IEEE Trans. Appl. Supercond. 24 (4): 1700110. arXiv: 1401.5504 . Bibcode:2014ITAS...2418294B. doi:10.1109/TASC.2014.2318294. S2CID   44902153.
  7. Dorojevets M, Ayala CL, Yoshikawa N, Fujimaki A (2010). "16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder". IEEE Trans. Appl. Supercond. 23 (3): 1700605. doi:10.1109/TASC.2012.2233846. S2CID   24955156.
  8. Semenov VK, Polyakov YA, Tolpygo SK (2015). "New AC-Powered SFQ Digital Circuits". IEEE Trans. Appl. Supercond. 25 (3): 1–7. arXiv: 1412.6552 . Bibcode:2015ITAS...2582665S. doi:10.1109/TASC.2014.2382665. S2CID   29766710.
  9. Herr QP, Osborne J, Stoutimore MJ, Hearne H, Selig R, Vogel J, Min E, Talanov VV, Herr AY (2015). "Reproducible operating margins on a 72 800-device digital superconducting chip". Supercond. Sci. Technol. 28 (12): 124003. arXiv: 1510.01220 . Bibcode:2015SuScT..28l4003H. doi:10.1088/0953-2048/28/12/124003. S2CID   10139340.
  10. 1 2 3 Semenov VK, Polyakov YA, Tolpygo SK (2017). "AC-biased shift registers as fabrication process benchmark circuits and flux trapping diagnostic tool". IEEE Trans. Appl. Supercond. 27 (4): 1301409. arXiv: 1701.03837 . Bibcode:2017ITAS...2769585S. doi:10.1109/TASC.2017.2669585. S2CID   5883687.
  11. Aoyagi M, Nakagawa H, Kurosawa I, Takada S (1991). "Josephson LSI fabrication technology using NbN/MgO/NbN tunnel junctions". IEEE Trans. Magn. 27 (2): 3180–3183. Bibcode:1991ITM....27.3180A. doi:10.1109/20.133887.
  12. Nagasawa S, Satoh T, Hinode K, Kitagawa Y, Hidaka M (2007). "Yield Evaluation of 10-kA/cm² Nb Multi-Layer Fabrication Process Using Conventional Superconducting RAMs". IEEE Trans. Appl. Supercond. 17 (2): 177–180. Bibcode:2007ITAS...17..177N. doi:10.1109/TASC.2007.898050. S2CID   44057953.