Josephson junction count

Last updated
Photograph of the D-Wave TwoX "Washington" quantum annealing processor chip mounted and wire-bonded in a sample holder. This chip was introduced in 2015 and includes 128,472 Josephson junctions. D-Wave-Washington-1000Q.jpg
Photograph of the D-Wave TwoX "Washington" quantum annealing processor chip mounted and wire-bonded in a sample holder. This chip was introduced in 2015 and includes 128,472 Josephson junctions.

The Josephson junction count is the number of Josephson junctions on a superconducting integrated circuit chip. Josephson junctions are active circuit elements in superconducting circuits. The Josephson junction count is a measure of circuit or device complexity, similar to the transistor count used for semiconductor integrated circuits.

Contents

Examples of circuits using Josephson junctions include digital circuits based on SFQ logic (e.g., RSFQ, RQL, adiabatic quantum flux parametron), superconducting quantum computing circuits, superconducting analog circuits, etc.

Integrated circuits

The superconducting integrated circuits listed here must have been fabricated and tested, but are not required to be commercially available. Chip area includes the full extent of the chip.

ReferenceDescriptionJunction
count
DateMakerProcessCircuit
[mm²]
Chip
[mm²]
[1] RSFQ NOT gate 131987 Moscow State U. 10  μm, 5 MA/m2, 2 Nb 1.1 ?
CORE1α6 [2] RSFQ microprocessor, 8 bit 6,3192004 NEC 2 μm, 25 MA/m210.9 ?
SCRAM2 [3] RSFQ microprocessor, 8 bit8,1972006SRL2 μm, 25 MA/m215.325
CORE1γ [4] RSFQ microprocessor, 8 bit22,3022007ISTEC2 μm, 25 MA/m240.4564
Rainier [5] RSFQ, 128 qubit QA processor23,3602010 D-Wave, SVTC 250  nm, 2.5 MA/m2, [6] 6 Nb832
Vesuvius SFQ, 512 qubit QA processor96,0002012 D-Wave, SVTC 250 nm, 2.5 MA/m2, 6 Nb8162
[7] RSFQ, 16-bit adder12,7852012 SBU, AIST1 μm, 100 MA/m2, 10 Nb8.529.75
[8] 8,192 bit shift register 32,8002014 SBU, MIT-LL 500 nm, 100 MA/m2, 8 Nb925
Washington (W1K)SFQ, 2048 qubit QA processor128,4722015 D-Wave, Cypress 250 nm, 2.5 MA/m2, 6 Nb30.3136
[9] RQL, 2 shift registers72,8002015 NGC, MIT-LL 500 nm, 100 MA/m2, 8 Nb925
[10] 16000 bit shift register65,0002017SBU, MIT-LL500 nm, 100 MA/m2, 8 Nb1225
[10] 36000 bit shift register144,0002017SBU, MIT-LL350 nm, 100 MA/m2, 8 Nb1525
[10] 202280 bit shift register809,1502017SBU, MIT-LL350 nm, 100 MA/m2, 8 Nb64100
Pegasus P16 SFQ, 5640 qubit QA processor1,030,0002020 D-Wave, SkyWater Technology250 nm, 2.5 MA/m2, 6 Nb70.6 ?

Maker column may include organizations that designed and fabricated the chip.

Process column information: minimum linewidth, Josephson junction critical current density, superconducting layer number and materials. Conversions for units of critical current density: 1 MA/m2 = 1 μA/μm2 = 100 A/cm2.

Memory

Memory is an electronic data storage device, often used as computer memory, on a single integrated circuit chip. The superconducting integrated circuits listed here must have been fabricated and tested, but are not required to be commercially available. Chip area includes the full extent of the chip.

ReferenceDescriptionJunction
count
DateMakerProcessCircuit
[mm²]
Chip
[mm²]
[11] 1024 bit ROM, NbN/MgO/NbN junctions5,9431990Electrotechnical Lab, Japan3 μm, 5.6 MA/m2, 2 Nb + 1 Pb-In ?17.25
[12] 4096 bit RAM 23,4882005ISTEC1 μm, 100 MA/m2, 10 Nb5.5 ?

Related Research Articles

<span class="mw-page-title-main">SQUID</span> Type of magnetometer

A SQUID is a very sensitive magnetometer used to measure extremely weak magnetic fields, based on superconducting loops containing Josephson junctions.

<span class="mw-page-title-main">Magnesium diboride</span> Chemical compound

Magnesium diboride is the inorganic compound with the formula MgB2. It is a dark gray, water-insoluble solid. The compound has attracted attention because it becomes superconducting at 39 K (−234 °C). In terms of its composition, MgB2 differs strikingly from most low-temperature superconductors, which feature mainly transition metals. Its superconducting mechanism is primarily described by BCS theory.

In electronics, rapid single flux quantum (RSFQ) is a digital electronic device that uses superconducting devices, namely Josephson junctions, to process digital signals. In RSFQ logic, information is stored in the form of magnetic flux quanta and transferred in the form of Single Flux Quantum (SFQ) voltage pulses. RSFQ is one family of superconducting or SFQ logic. Others include Reciprocal Quantum Logic (RQL), ERSFQ – energy-efficient RSFQ version that does not use bias resistors, etc. Josephson junctions are the active elements for RSFQ electronics, just as transistors are the active elements for semiconductor electronics. RSFQ is a classical digital, not quantum computing, technology.

Superconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs use superconducting architecture.

<span class="mw-page-title-main">Quantum flux parametron</span>

A Quantum Flux Parametron (QFP) is a digital logic implementation technology based on superconducting Josephson junctions. QFP's were invented by Eiichi Goto at the University of Tokyo as an improvement over his earlier parametron based digital logic technology, which did not use superconductivity effects or Josephson junctions. The Josephson junctions on QFP integrated circuits to improve speed and energy efficiency enormously over the parametrons.

In superconductivity, a semifluxon is a half integer vortex of supercurrent carrying the magnetic flux equal to the half of the magnetic flux quantum Φ0. Semifluxons exist in the 0-π long Josephson junctions at the boundary between 0 and π regions. This 0-π boundary creates a π discontinuity of the Josephson phase. The junction reacts to this discontinuity by creating a semifluxon. Vortex's supercurrent circulates around 0-π boundary. In addition to semifluxon, there exist also an antisemifluxon. It carries the flux −Φ0/2 and its supercurrent circulates in the opposite direction.

<span class="mw-page-title-main">Flux qubit</span> Superconducting qubit implementation

In quantum computing, more specifically in superconducting quantum computing, flux qubits are micrometer sized loops of superconducting metal that is interrupted by a number of Josephson junctions. These devices function as quantum bits. The flux qubit was first proposed by Terry P. Orlando et al. at MIT in 1999 and fabricated shortly thereafter. During fabrication, the Josephson junction parameters are engineered so that a persistent current will flow continuously when an external magnetic flux is applied. Only an integer number of flux quanta are allowed to penetrate the superconducting ring, resulting in clockwise or counter-clockwise mesoscopic supercurrents in the loop to compensate a non-integer external flux bias. When the applied flux through the loop area is close to a half integer number of flux quanta, the two lowest energy eigenstates of the loop will be a quantum superposition of the clockwise and counter-clockwise currents. The two lowest energy eigenstates differ only by the relative quantum phase between the composing current-direction states. Higher energy eigenstates correspond to much larger (macroscopic) persistent currents, that induce an additional flux quantum to the qubit loop, thus are well separated energetically from the lowest two eigenstates. This separation, known as the "qubit non linearity" criteria, allows operations with the two lowest eigenstates only, effectively creating a two level system. Usually, the two lowest eigenstates will serve as the computational basis for the logical qubit.

<span class="mw-page-title-main">Sadeg Faris</span>

Sadeg M. Faris is a Libyan-American engineer and entrepreneur.

In a standard superconductor, described by a complex field fermionic condensate wave function, vortices carry quantized magnetic fields because the condensate wave function is invariant to increments of the phase by . There a winding of the phase by creates a vortex which carries one flux quantum. See quantum vortex.

In physics, persistent current is a perpetual electric current that does not require an external power source. Such a current is impossible in normal electrical devices, since all commonly-used conductors have a non-zero resistance, and this resistance would rapidly dissipate any such current as heat. However, in superconductors and some mesoscopic devices, persistent currents are possible and observed due to quantum effects. In resistive materials, persistent currents can appear in microscopic samples due to size effects. Persistent currents are widely used in the form of superconducting magnets.

The superconducting tunnel junction (STJ) — also known as a superconductor–insulator–superconductor tunnel junction (SIS) — is an electronic device consisting of two superconductors separated by a very thin layer of insulating material. Current passes through the junction via the process of quantum tunneling. The STJ is a type of Josephson junction, though not all the properties of the STJ are described by the Josephson effect.

Circuit quantum electrodynamics provides a means of studying the fundamental interaction between light and matter. As in the field of cavity quantum electrodynamics, a single photon within a single mode cavity coherently couples to a quantum object (atom). In contrast to cavity QED, the photon is stored in a one-dimensional on-chip resonator and the quantum object is no natural atom but an artificial one. These artificial atoms usually are mesoscopic devices which exhibit an atom-like energy spectrum. The field of circuit QED is a prominent example for quantum information processing and a promising candidate for future quantum computation.

<span class="mw-page-title-main">Superconducting nanowire single-photon detector</span> Type of single-photon detector

The superconducting nanowire single-photon detector is a type of optical and near-infrared single-photon detector based on a current-biased superconducting nanowire. It was first developed by scientists at Moscow State Pedagogical University and at the University of Rochester in 2001. The first fully operational prototype was demonstrated in 2005 by the National Institute of Standards and Technology (Boulder), and BBN Technologies as part of the DARPA Quantum Network.

<span class="mw-page-title-main">Transmon</span> Superconducting qubit implementation

In quantum computing, and more specifically in superconducting quantum computing, a transmon is a type of superconducting charge qubit designed to have reduced sensitivity to charge noise. The transmon was developed by Robert J. Schoelkopf, Michel Devoret, Steven M. Girvin, and their colleagues at Yale University in 2007. Its name is an abbreviation of the term transmission line shunted plasma oscillation qubit; one which consists of a Cooper-pair box "where the two superconductors are also [capacitively] shunted in order to decrease the sensitivity to charge noise, while maintaining a sufficient anharmonicity for selective qubit control".

<span class="mw-page-title-main">Coplanar waveguide</span> Type of planar transmission line

Coplanar waveguide is a type of electrical planar transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. On a smaller scale, coplanar waveguide transmission lines are also built into monolithic microwave integrated circuits.

Superconducting logic refers to a class of logic circuits or logic gates that use the unique properties of superconductors, including zero-resistance wires, ultrafast Josephson junction switches, and quantization of magnetic flux (fluxoid). As of 2023, superconducting computing is a form of cryogenic computing, as superconductive electronic circuits require cooling to cryogenic temperatures for operation, typically below 10 kelvin. Often superconducting computing is applied to quantum computing, with an important application known as superconducting quantum computing.

<span class="mw-page-title-main">Beyond CMOS</span> Possible future digital logic technologies

Beyond CMOS refers to the possible future digital logic technologies beyond the scaling limits of CMOS technology. which limits device density and speeds due to heating effects.

A Josephson voltage standard is a complex system that uses a superconducting integrated circuit chip operating at a temperature of 4 K to generate stable voltages that depend only on an applied frequency and fundamental constants. It is an intrinsic standard in the sense that it does not depend on any physical artifact. It is the most accurate method to generate or measure voltage and has been, since an international agreement in 1990, the basis for voltage standards around the world.

Oleg A. Mukhanov is a Russian electrical engineer. He is an IEEE fellow who has focused on superconductivity. He is the co-inventor of SFQ digital technology. He authored and co-authored over 200 scientific papers and holds 24 patents. He is American and resides in the United States.

A Josephson diode is an electronic device that superconducts electrical current in one direction and is resistive in the other direction. The device is a Josephson junction exhibiting a superconducting diode effect (SDE). It is an example of a quantum material Josephson junction (QMJJ), where the weak link in the junction is a quantum material. The Josephson diode effect can occur in superconducting devices where time reversal symmetry and inversion symmetry are broken.

References

  1. Koshelets V, Likharev K, Migulin V, Mukhanov O, Ovsyannikov G, Semenov V, Serpuchenko I, Vystavkin A (1987). "Experimental realization of a resistive single flux quantum logic circuit". IEEE Trans. Magn. 23 (2): 755–758. Bibcode:1987ITM....23..755K. doi:10.1109/TMAG.1987.1064953.
  2. Tanaka M, Kondo T, Nakajima N, Kawamoto T, Yamanashi Y, Kamiya Y, Akimoto A, Fujimaki A, Hayakawa H, Yoshikawa N, Terai H, Hashimoto Y, Yorozu S (2005). "Demonstration of a single-flux-quantum microprocessor using passive transmission lines". IEEE Trans. Appl. Supercond. 15 (2): 400–404. Bibcode:2005ITAS...15..400T. doi:10.1109/TASC.2005.849860. hdl: 10131/899 . S2CID   21115527.
  3. Nobumori Y, Nishigai T, Nakamiya K, Yoshikawa N, Fujimaki A, Terai H, Yorozu S (2007). "Design and Implementation of a Fully Asynchronous SFQ Microprocessor: SCRAM2". IEEE Trans. Appl. Supercond. 17 (2): 478–481. Bibcode:2007ITAS...17..478N. doi:10.1109/TASC.2007.898658. hdl: 10131/4241 . S2CID   42842976.
  4. Tanaka M, Yamanashi Y, Irie N, Park H-J, Iwasaki S, Takagi K, Taketomi K, Fujimaki A, Yoshikawa N, Terai H, Yorozu S (2007). "Design and implementation of a pipelined 8 bit-serial single-flux-quantum microprocessor with cache memories". Supercond. Sci. Technol. 20 (11): S305–S309. Bibcode:2007SuScT..20S.305T. doi:10.1088/0953-2048/20/11/S01. S2CID   121079166.
  5. Johnson MW, Bunyk P, Maibaum F, Tolkacheva E, Berkley AJ, Chapple EM, Harris R, Johansson J, Lanting T, Perminov I, Ladizinsky E, Oh T, Rose G (2010). "A scalable control system for a superconducting adiabatic quantum optimization processor". Supercond. Sci. Technol. 23 (6): 065004. arXiv: 0907.3757 . Bibcode:2010SuScT..23f5004J. doi:10.1088/0953-2048/23/6/065004. S2CID   16656122.
  6. Bunyk PI, Hoskinson EM, Johnson MW, Tolkacheva E, Altomare F, Berkley AJ, Harris R, Hilton JP, Lanting T, Przybysz AJ, Whittaker J (2014). "Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor". IEEE Trans. Appl. Supercond. 24 (4): 1700110. arXiv: 1401.5504 . Bibcode:2014ITAS...2418294B. doi:10.1109/TASC.2014.2318294. S2CID   44902153.
  7. Dorojevets M, Ayala CL, Yoshikawa N, Fujimaki A (2010). "16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder". IEEE Trans. Appl. Supercond. 23 (3): 1700605. doi:10.1109/TASC.2012.2233846. S2CID   24955156.
  8. Semenov VK, Polyakov YA, Tolpygo SK (2015). "New AC-Powered SFQ Digital Circuits". IEEE Trans. Appl. Supercond. 25 (3): 1–7. arXiv: 1412.6552 . Bibcode:2015ITAS...2582665S. doi:10.1109/TASC.2014.2382665. S2CID   29766710.
  9. Herr QP, Osborne J, Stoutimore MJA, Hearne H, Selig R, Vogel J, Min E, Talanov VV, Herr AY (2015). "Reproducible operating margins on a 72 800-device digital superconducting chip". Supercond. Sci. Technol. 28 (12): 124003. arXiv: 1510.01220 . Bibcode:2015SuScT..28l4003H. doi:10.1088/0953-2048/28/12/124003. S2CID   10139340.
  10. 1 2 3 Semenov VK, Polyakov YA, Tolpygo SK (2017). "AC-biased shift registers as fabrication process benchmark circuits and flux trapping diagnostic tool". IEEE Trans. Appl. Supercond. 27 (4): 1301409. arXiv: 1701.03837 . Bibcode:2017ITAS...2769585S. doi:10.1109/TASC.2017.2669585. S2CID   5883687.
  11. Aoyagi M, Nakagawa H, Kurosawa I, Takada S (1991). "Josephson LSI fabrication technology using NbN/MgO/NbN tunnel junctions". IEEE Trans. Magn. 27 (2): 3180–3183. Bibcode:1991ITM....27.3180A. doi:10.1109/20.133887.
  12. Nagasawa S, Satoh T, Hinode K, Kitagawa Y, Hidaka M (2007). "Yield Evaluation of 10-kA/cm² Nb Multi-Layer Fabrication Process Using Conventional Superconducting RAMs". IEEE Trans. Appl. Supercond. 17 (2): 177–180. Bibcode:2007ITAS...17..177N. doi:10.1109/TASC.2007.898050. S2CID   44057953.