Kanoite

Last updated
Kanoite
Kanoite displayed at Mining Museum of Akita University.jpg
Kanoite exhibited at the Mining Museum of Akita University, Japan
General
Category Silicate mineral (pyroxene, inosilicate)
Formula
(repeating unit)
(Mg,Mn2+)2Si2O6
IMA symbol Knt [1]
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group P21/c
Unit cell a = 9.73, b = 8.93
c = 5.26 [Å]; β = 108.56°; Z = 4
Identification
Formula mass 246.73 g/mol
ColorLight pinkish brown
Twinning Polysynthetic
Cleavage Perfect on {110}, {110} - {110} = 88°
Mohs scale hardness6
Luster vitreous
Diaphaneity Semitransparent
Specific gravity 3.66
Optical propertiesBiaxial (+)
Refractive index nα = 1.715 nβ = 1.715 nγ = 1.728
Birefringence 0.0130
2V angle 40-42 measured
References [2] [3] [4]

Kanoite is a light pinkish brown silicate mineral that is found in metamorphic rocks. It is an inosilicate and has a chemical formula of (Mg,Mn2+)2Si2O6. [2] It is a member of pyroxene group and clinopyroxene subgroup. [5]

Contents

Crystallography

Kanoite crystallizes in the monoclinic crystal system. Its Hermann–Mauguin Symbol is 2/m. Under this crystal system, the three axes of the crystal are all different in length. The a and the b axes are perpendicular, and b and c axes are perpendicular. The a and c axes make an oblique shape. The axial ratio for kanoite is a:b:c =1.0894:1:0.5884 and the cell dimensions are: a = 9.73, b = 8.93 and c = 5.26 Å with Z = 4. [3] Kanoite has a 2-fold axis and a mirror plane.

Kanoite is birefringent. It occurs as a mineral has 3 different indices of refraction. When the light passes through the Kanoite medium, the light splits due to unequal reflection from the crystal faces. As kanoite is birefringent, it is also anisotropic. In an anisotropic mineral, the velocity of light differs as the direction of the crystal changes.

Discovery and occurrence

Kanoite is a rare mineral which was found in Tatehira mine, Kumaishi, Oshima Peninsula, Hokkaido, Japan in 1977. In the type locality kanoite occurs along a joint that cuts a pyroxmangite-cummingtonite metamorphic rock in a manganese ore deposit. The region has undergone contact metamorphism as magma intruded the area. It was named to honor Hiroshi Kano, a petrology professor at Akita University in Japan. [2]

It has also been reported from Broken Hill, New South Wales, Australia, the Semail Ophiolite in Oman, and the Balmat–Edwards zinc district, Saint Lawrence County, New York. [3]

Related Research Articles

<span class="mw-page-title-main">Pyroxene</span> Group of inosilicate minerals with single chains of silica tetrahedra

The pyroxenes are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula XY(Si,Al)2O6, where X represents calcium (Ca), sodium (Na), iron or magnesium (Mg) and more rarely zinc, manganese or lithium, and Y represents ions of smaller size, such as chromium (Cr), aluminium (Al), magnesium (Mg), cobalt (Co), manganese (Mn), scandium (Sc), titanium (Ti), vanadium (V) or even iron. Although aluminium substitutes extensively for silicon in silicates such as feldspars and amphiboles, the substitution occurs only to a limited extent in most pyroxenes. They share a common structure consisting of single chains of silica tetrahedra. Pyroxenes that crystallize in the monoclinic system are known as clinopyroxenes and those that crystallize in the orthorhombic system are known as orthopyroxenes.

<span class="mw-page-title-main">Melilite</span> Sorosilicate mineral

Melilite refers to a mineral of the melilite group. Minerals of the group are solid solutions of several endmembers, the most important of which are gehlenite and åkermanite. A generalized formula for common melilite is (Ca,Na)2(Al,Mg,Fe2+)[(Al,Si)SiO7]. Discovered in 1793 near Rome, it has a yellowish, greenish-brown color. The name derives from the Greek words meli (μέλι) "honey" and lithos (λίθους) "stone".The name refers to a group of minerals (melilite group) with chemically similar composition, nearly always minerals in åkermanite-gehlenite series.

<span class="mw-page-title-main">Chloritoid</span>

Chloritoid is a silicate mineral of metamorphic origin. It is an iron magnesium manganese alumino-silicate hydroxide with formula (Fe, Mg, Mn)
2
Al
4
Si
2
O
10
(OH)
4
. It occurs as greenish grey to black platy micaceous crystals and foliated masses. Its Mohs hardness is 6.5, unusually high for a platy mineral, and it has a specific gravity of 3.52 to 3.57. It typically occurs in phyllites, schists and marbles.

<span class="mw-page-title-main">Pigeonite</span>

Pigeonite is a mineral in the clinopyroxene subgroup of the pyroxene group. It has a general formula of (Ca,Mg,Fe)(Mg,Fe)Si2O6. The calcium cation fraction can vary from 5% to 25%, with iron and magnesium making up the rest of the cations.

<span class="mw-page-title-main">Kutnohorite</span> Mineral of calcium manganese carbonate

Kutnohorite is a rare calcium manganese carbonate mineral with magnesium and iron that is a member of the dolomite group. It forms a series with dolomite, and with ankerite. The end member formula is CaMn2+(CO3)2, but Mg2+ and Fe2+ commonly substitute for Mn2+, with the manganese content varying from 38% to 84%, so the formula Ca(Mn2+,Mg,Fe2+)(CO3)2 better represents the species. It was named by Professor Bukowsky in 1901 after the type locality of Kutná Hora, Bohemia, in the Czech Republic. It was originally spelt "kutnahorite" but "kutnohorite" is the current IMA-approved spelling.

Apachite is a copper silicate mineral with a general formula of Cu9Si10O29·11H2O. The name is associated with the Apache tribe residents of the area near the Christmas copper mine in the Dripping Spring Mountains of Gila County, Arizona, the location where apachite was first described in 1980.

<span class="mw-page-title-main">Marrite</span>

Marrite (mar'-ite) is a mineral with the chemical formula PbAgAsS3. It is the arsenic equivalent of freieslebenite (PbAgSbS3), but also displays close polyhedral characteristics with sicherite and diaphorite. Marrite was named in honor of geologist John Edward Marr (1857–1933) of Cambridge, England.

Jonesite is a mineral with the chemical formula Ba4(K,Na)2[Ti4Al2Si10O36]*6H2O. This mineral is named after Francis Tucker Jones (1905–1993), who discovered the mineral while working as a Research Chemical Microscopist at Berkeley in CA. Jonesite has diffraction symmetry of mmm, which implies an orthorhombic system with all three axes perpendicular to each other and the angles between each axis equal to 90 degrees. In addition to symmetrical properties, Jonesite is a biaxial mineral with birefringence, which is a term to describe the difference between index of refraction. Jonesite is anisotropic, meaning the speed of light changes through the mineral, so the mineral shows color when viewed in crossed polarized light under a microscope. The mineral also has medium relief, which is a measure of how well the mineral stands out when viewed under a microscope in plane polarized light. In addition to being one of the rarest minerals in the Benitoite Gem mine located in California, Jonesite also is the first titanosilicate mineral with a porous double-layered crystal structure. This discovery is important because titanosilicate frameworks have industrial uses in energy companies and are used in containing radioactive waste.

<span class="mw-page-title-main">Kamiokite</span>

Kamiokite is an iron-molybdenum oxide mineral with the chemical formula Fe2Mo3O8. The name kamiokite is derived from the locality, the Kamioka mine in Gifu Prefecture, Japan, where this mineral was first discovered in 1975.

Kochite is a rare silicate mineral with chemical formula of (Na,Ca)3Ca2(Mn,Ca)ZrTi[(F,O)4(Si2O7)2] or double that. Kochite is a member of the rosenbuschite group.

<span class="mw-page-title-main">Amicite</span> Zeolite mineral

Amicite is a silicate mineral of the zeolite family. It has a general formula of K2Na2Al4Si4O16·5(H2O). Amicite was described in 1979 from specimens obtained at the Höwenegg quarry in Immendingen, Hegau, in the German state of Baden-Württemberg, which is consequently its type locality. The name is in honor of Giovanni Battista Amici (1786–1863) a botanist, physicist, optician, and inventor of microscope optical elements.

<span class="mw-page-title-main">Gabrielite</span> Sulfosalt mineral

Gabrielite is a rare thallium sulfosalt mineral with a chemical formula of Tl6Ag3Cu6(As,Sb)9S21 or Tl2AgCu2As3S7.

<span class="mw-page-title-main">Nambulite</span>

Nambulite is a lithium bearing manganese silicate mineral with the chemical formula (Li,Na)Mn4Si5O14(OH). It is named after the mineralogist, Matsuo Nambu (born 1917) of Tohoko University, Japan, who is known for his research in manganese minerals. The mineral was first discovered in the Funakozawa Mine of northeastern Japan, a metasedimentary manganese ore.

Sewardite is a rare arsenate mineral with formula of CaFe3+2(AsO4)2(OH)2. Sewardite was discovered in 1982 and named for the mineralogist, Terry M. Seward (born 1940), a professor of geochemistry in Zürich, Switzerland.

<span class="mw-page-title-main">Kröhnkite</span>

Kröhnkite ( Na2Cu(SO4)2•2H2O ) is a rare copper sulfate mineral named after B. Kröhnke who first researched it. Kröhnkite may be replaced by Saranchinaite, the anhydrous form of the mineral, if heated to temperatures above 200 °C (392 °F).

<span class="mw-page-title-main">Studenitsite</span>

Studenitsite is a rare borate mineral with chemical formula of NaCa2[B9O14(OH)4]·2H2O.

<span class="mw-page-title-main">Chesterite</span>

Chesterite is a rare silicate mineral that can be compared to amphiboles, micas, and jimthompsonite. Its chemical formula is (Mg,Fe)
17
Si
20
O
54
(OH)
6
. Chesterite is named after Chester, Vermont, where it was first described in 1977. The specific geologic setting within its origin is the Carleton talc quarry in Chester, Vermont.

<span class="mw-page-title-main">Whiteite</span>

Whiteite is a rare hydrated hydroxyphosphate mineral.

<span class="mw-page-title-main">Manganvesuvianite</span>

Manganvesuvianite is a rare mineral with formula Ca19Mn3+(Al,Mn3+,Fe3+)10(Mg,Mn2+)2(Si2O7)4(SiO4)10O(OH)9. The mineral is red to nearly black in color. Discovered in South Africa and described in 2002, it was so named for the prevalence of manganese in its composition and its relation to vesuvianite.

<span class="mw-page-title-main">Talmessite</span>

Talmessite is a hydrated calcium magnesium arsenate, often with significant amounts of cobalt or nickel. It was named in 1960 for the type locality, the Talmessi mine, Anarak district, Iran. It forms a series with β-Roselite, where cobalt replaces some of the magnesium, and with gaitite, where zinc replaces the magnesium. All these minerals are members of the fairfieldite group. Talmessite is dimorphic with wendwilsonite.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 Handbook of Mineralogy
  3. 1 2 3 Classification of Kanoite. In Kanoite, Ralph, J., & Chau, I., Mindat.org
  4. Webmineral data
  5. Physical Properties of Kanoite. In Kanoite Mineral Data. Barthelmy, D. (1997-2010).