Kyle Cranmer

Last updated
Kyle Cranmer
Born
NationalityAmerican
Alma mater University of Wisconsin-Madison
Rice University
ASMS
Known for Higgs boson
RooFit/RooStats
Data preservation
open access
e-publishing
Awards Presidential Early Career Award for Scientists and Engineers (2006)
National Science Foundation's Career Award (2009)
Goldhaber Fellow, Brookhaven National Laboratory
Scientific career
Fields Physics
Institutions New York University
Brookhaven National Laboratory
Doctoral advisor Sau Lan Wu

Kyle Cranmer is an American physicist and a professor at New York University at the Center for Cosmology and Particle Physics and Affiliated Faculty member at NYU's Center for Data Science. He is an experimental particle physicist working, primarily, on the Large Hadron Collider, based in Geneva, Switzerland. Cranmer popularized a collaborative statistical modeling approach and developed statistical methodology, [1] which was used extensively for the discovery of the Higgs boson at the LHC in July, 2012.

Cranmer is active in the discussions of data preservation, open access, reproducibility, machine learning, and e-science in the context of particle physics. Cranmer performed a search for exotic Higgs decays in archived data from the ALEPH experiment [2] ten years after the experiment finalized. He serves on the advisory board for INSPIRE, the literature database for high energy physics, and is a member of the Data Preservation in High Energy Physics study group as well as Data and Software Preservation for Open Science.

Since the discovery of the Higgs boson, Cranmer has been a popular choice as a guest on science television programming. In July, 2011, Cranmer appeared in a special episode of Neil deGrasse Tyson's StarTalk Live alongside Bill Nye the Science Guy, Eugene Mirman, and Sarah Vowell. In a special video created for Science Nation, the online magazine of the National Science Foundation, Cranmer was featured discussing the Higgs boson in November, 2012. Cranmer also discussed the discovery of the Higgs boson in a TedxTalk in February, 2013. [3]

Cranmer obtained his Ph.D. in physics from the University of Wisconsin-Madison in 2005 under Sau Lan Wu and his B.A. in mathematics and physics from Rice University. He was a Goldhaber Fellow at Brookhaven National Lab from 2005 to 2007. In 2007, he was awarded the Presidential Early Career Award for Scientists and Engineers from President George W. Bush via the Department of Energy's Office of Science and in 2009 he was awarded the National Science Foundation's Career Award. Cranmer is also a graduate of the Arkansas School for Mathematics, Sciences, and the Arts. He was named a Fellow of the American Physical Society in 2021. [4]

Related Research Articles

<span class="mw-page-title-main">Elementary particle</span> Subatomic particle having no known substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles.

<span class="mw-page-title-main">Leon M. Lederman</span> American mathematician and physicist (1922–2018)

Leon Max Lederman was an American experimental physicist who received the Nobel Prize in Physics in 1988, along with Melvin Schwartz and Jack Steinberger, for research on neutrinos. He also received the Wolf Prize in Physics in 1982, along with Martin Lewis Perl, for research on quarks and leptons. Lederman was director emeritus of Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. He founded the Illinois Mathematics and Science Academy, in Aurora, Illinois in 1986, where he was resident scholar emeritus from 2012 until his death in 2018.

<span class="mw-page-title-main">False vacuum</span> Hypothetical vacuum, less stable than true vacuum

In quantum field theory, a false vacuum is a hypothetical vacuum that is relatively stable, but not in the most stable state possible. In this condition it is called metastable. It may last for a very long time in this state, but could eventually decay to the more stable one, an event known as false vacuum decay. The most common suggestion of how such a decay might happen in our universe is called bubble nucleation – if a small region of the universe by chance reached a more stable vacuum, this "bubble" would spread.

<span class="mw-page-title-main">Tom Kibble</span> British physicist

Sir Thomas Walter Bannerman Kibble was a British theoretical physicist, senior research investigator at the Blackett Laboratory and Emeritus Professor of Theoretical Physics at Imperial College London. His research interests were in quantum field theory, especially the interface between high-energy particle physics and cosmology. He is best known as one of the first to describe the Higgs mechanism, and for his research on topological defects. From the 1950s he was concerned about the nuclear arms race and from 1970 took leading roles in promoting the social responsibility of the scientist.

<span class="mw-page-title-main">John Ellis (physicist, born 1946)</span> British physicist

Jonathan Richard "John" Ellis is a British-Swiss theoretical physicist.

<span class="mw-page-title-main">DØ experiment</span> Particle physics research project (1983–2011)

The DØ experiment was a worldwide collaboration of scientists conducting research on the fundamental nature of matter. DØ was one of two major experiments located at the Tevatron Collider at Fermilab in Batavia, Illinois. The Tevatron was the world's highest-energy accelerator from 1983 until 2009, when its energy was surpassed by the Large Hadron Collider. The DØ experiment stopped taking data in 2011, when the Tevatron shut down, but data analysis is still ongoing. The DØ detector is preserved in Fermilab's DØ Assembly Building as part of a historical exhibit for public tours.

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

<span class="mw-page-title-main">C. R. Hagen</span>

Carl Richard Hagen is a professor of particle physics at the University of Rochester. He is most noted for his contributions to the Standard Model and Symmetry breaking as well as the 1964 co-discovery of the Higgs mechanism and Higgs boson with Gerald Guralnik and Tom Kibble (GHK). As part of Physical Review Letters 50th anniversary celebration, the journal recognized this discovery as one of the milestone papers in PRL history. While widely considered to have authored the most complete of the early papers on the Higgs theory, GHK were controversially not included in the 2013 Nobel Prize in Physics.

<span class="mw-page-title-main">Higgs boson</span> Elementary particle involved with rest mass

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to mass. It is also very unstable, decaying into other particles almost immediately upon generation.

<span class="mw-page-title-main">Gordon L. Kane</span>

Gordon Leon Kane is Victor Weisskopf Distinguished University Professor at the University of Michigan and director emeritus at the Leinweber Center for Theoretical Physics (LCTP), a leading center for the advancement of theoretical physics. He was director of the LCTP from 2005 to 2011 and Victor Weisskopf Collegiate Professor of Physics from 2002 - 2011. He received the Lilienfeld Prize from the American Physical Society in 2012, and the J. J. Sakurai Prize for Theoretical Particle Physics in 2017.

<span class="mw-page-title-main">Tejinder Virdee</span> British physicist

Sir Tejinder Singh Virdee,, is a Kenyan-born British experimental particle physicist and Professor of Physics at Imperial College London. He is best known for originating the concept of the Compact Muon Solenoid (CMS) with a few other colleagues and has been referred to as one of the 'founding fathers' of the project. CMS is a world-wide collaboration which started in 1991 and now has over 3500 participants from 45 countries.

<span class="mw-page-title-main">Sau Lan Wu</span> American physicist

Sau Lan Wu is a Chinese American particle physicist and the Enrico Fermi Distinguished Professor of Physics at the University of Wisconsin-Madison. She made important contributions towards the discovery of the J/psi particle, which provided experimental evidence for the existence of the charm quark, and the gluon, the vector boson of the strong force in the Standard Model of physics. Recently, her team located at the European Organization for Nuclear Research (CERN), using data collected at the Large Hadron Collider (LHC), was part of the international effort in the discovery of a boson consistent with the Higgs boson.

<span class="mw-page-title-main">James E. Brau</span> American physicist and professor

James E. Brau is an American physicist at the University of Oregon (UO) who conducts research on elementary particles and fields. He founded the Oregon experimental high energy physics group in 1988 and served as director of the UO Center for High Energy Physics from 1997 to 2016. Prior to joining the Oregon faculty, he served in the Air Force and held positions at the Stanford Linear Accelerator Center and the University of Tennessee. He is a fellow of both the American Physical Society and also the American Association for the Advancement of Science. In 2006 he was appointed the Philip H. Knight Professor of Natural Science, an endowed professorship.

Stephanie A. Majewski is an American physicist at the University of Oregon (UO) researching high energy particle physics at the CERN ATLAS experiment. She worked as a postdoctoral research associate at the Brookhaven National Laboratory prior to joining the faculty at UO in 2012. She was selected for the Early Career Research Program award of the U.S. Department of Energy (DOE), one of 35 scientists in all DOE-supported fields to receive this national honor in 2014.

<span class="mw-page-title-main">Jon Butterworth</span> Professor of Physics at University College London

Jonathan Mark Butterworth is a Professor of Physics at University College London (UCL) working on the ATLAS experiment at CERN's Large Hadron Collider (LHC). His popular science book Smashing Physics, which tells the story of the search for the Higgs boson, was published in 2014 and his newspaper column / blog Life and Physics is published by The Guardian.

Howard Eli Haber is an American physicist, specializing in theoretical elementary particle physics.

<span class="mw-page-title-main">Brad Cox (physicist)</span> American physicist

Bradley Cox is an American physicist, academic and researcher. He is a Professor of Physics and the founder of the High Energy Physics Group at the University of Virginia.

<span class="mw-page-title-main">Meenakshi Narain</span> Indian-born American experimental physicist (1964–2023)

Meenakshi Narain was an Indian-born American experimental physicist. She was a Professor of Physics and Chair of the Department of Physics at Brown University, and was also Chair of the Collaboration Board of U.S. institutions in the Compact Muon Solenoid (CMS) Collaboration. She contributed to the discovery of the top quark in 1995 and Higgs Boson in 2012.

William Joseph Marciano is an American theoretical physicist, specializing in elementary particle physics.

David M. Strom is an experimental high energy particle physicist on the faculty of the University of Oregon.

References

  1. Cowan; Cranmer; Gross; Vitells (2011). "Asymptotic formulae for likelihood-based tests of new physics". Eur. Phys. J. C . 71 (2): 1554. arXiv: 1007.1727 . Bibcode:2011EPJC...71.1554C. doi:10.1140/epjc/s10052-011-1554-0.
  2. Schael, S.; Barate, R.; Brunelière, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jézéquel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocmé, B.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Maggi, G.; et al. (2010). "Search for neutral Higgs bosons decaying into four taus at LEP2". JHEP. 2010 (5): 49. arXiv: 1003.0705 . Bibcode:2010JHEP...05..049S. doi:10.1007/JHEP05(2010)049. S2CID   33921627.
  3. "Welcome - EPP @ NYU". Physics.nyu.edu. Retrieved 2022-10-07.
  4. "APS Fellow Archive". www.aps.org. Retrieved 2021-10-15.