Laforin

Last updated
epilepsy, progressive myoclonus type 2A, Lafora disease (laforin)
Identifiers
SymbolEPM2A
NCBI gene 7957
HGNC 3413
OMIM 607566
PDB 4RKK
RefSeq NM_001018041
UniProt O95278
Other data
Locus Chr. 6 q24
Search for
Structures Swiss-model
Domains InterPro

Laforin, encoded by the EPM2A gene, is a phosphatase, with a carbohydrate-binding domain, which is mutated in patients with Lafora disease. [1] [2] It contains a dual specificity phosphatase domain (DSP) and a carbohydrate binding module subtype 20 [3] (CBM20). Its physiological substrate has yet to be identified and the molecular mechanisms in which mutated laforin causes Lafora disease is unknown, though there has been progress made in the study by Ortolano et al. [1] Laforin regulates autophagy via Mammalian target of rapamycin, which is impaired in Lafora disease. [4]

Related Research Articles

Lafora disease is a rare, adult-onset and autosomal recessive genetic disorder which results in myoclonus epilepsy and usually results in death several years after the onset of symptoms. The disease is characterized by the accumulation of inclusion bodies, known as Lafora bodies, within the cytoplasm of the cells in the heart, liver, muscle, and skin. Lafora disease is also a neurodegenerative disease that causes impairment in the development of brain (cerebral) cortical neurons and is a glycogen metabolism disorder.

<i>PTEN</i> (gene) Tumor suppressor gene

Phosphatase and tensin homolog (PTEN) is a phosphatase in humans and is encoded by the PTEN gene. Mutations of this gene are a step in the development of many cancers, specifically glioblastoma, lung cancer, breast cancer, and prostate cancer. Genes corresponding to PTEN (orthologs) have been identified in most mammals for which complete genome data are available.

Myoclonic epilepsy refers to a family of epilepsies that present with myoclonus. When myoclonic jerks are occasionally associated with abnormal brain wave activity, it can be categorized as myoclonic seizure. If the abnormal brain wave activity is persistent and results from ongoing seizures, then a diagnosis of myoclonic epilepsy may be considered.

Prickle is also known as REST/NRSF-interacting LIM domain protein, which is a putative nuclear translocation receptor. Prickle is part of the non-canonical Wnt signaling pathway that establishes planar cell polarity. A gain or loss of function of Prickle1 causes defects in the convergent extension movements of gastrulation. In epithelial cells, Prickle2 establishes and maintains cell apical/basal polarity. Prickle1 plays an important role in the development of the nervous system by regulating the movement of nerve cells.

<span class="mw-page-title-main">Autoimmune regulator</span> Immune system protein

The autoimmune regulator (AIRE) is a protein that in humans is encoded by the AIRE gene. It is a 13kb gene on chromosome 21q22.3 that has 545 amino acids. AIRE is a transcription factor expressed in the medulla of the thymus. It is part of the mechanism which eliminates self-reactive T cells that would cause autoimmune disease. It exposes T cells to normal, healthy proteins from all parts of the body, and T cells that react to those proteins are destroyed.

Progressive Myoclonic Epilepsies (PME) are a rare group of inherited neurodegenerative diseases characterized by myoclonus, resistance to treatment, and neurological deterioration. The cause of PME depends largely on the type of PME. Most PMEs are caused by autosomal dominant or recessive and mitochondrial mutations. The location of the mutation also affects the inheritance and treatment of PME. Diagnosing PME is difficult due to their genetic heterogeneity and the lack of a genetic mutation identified in some patients. The prognosis depends largely on the worsening symptoms and failure to respond to treatment. There is no current cure for PME and treatment focuses on managing myoclonus and seizures through antiepileptic medication (AED).

<span class="mw-page-title-main">Atrophin 1</span> Protein-coding gene in the species Homo sapiens

Atrophin-1 is a protein that in humans is encoded by the ATN1 gene. The encoded protein includes a serine repeat and a region of alternating acidic and basic amino acids, as well as the variable glutamine repeat. The function of Atrophin-1 has not yet been determined. There is evidence provided by studies of Atrophin-1 in animals to suggest it acts as a transcriptional co-repressor. Atrophin-1 can be found in the nuclear and cytoplasmic compartments of neurons. It is expressed in nervous tissue.

<span class="mw-page-title-main">LRRK2</span> Protein kinase found in humans

Leucine-rich repeat kinase 2 (LRRK2), also known as dardarin and PARK8, is a large, multifunctional kinase enzyme that in humans is encoded by the LRRK2 gene. LRRK2 is a member of the leucine-rich repeat kinase family. Variants of this gene are associated with an increased risk of Parkinson's disease and Crohn's disease.

<span class="mw-page-title-main">Myotonin-protein kinase</span> Protein-coding gene in the species Homo sapiens

Myotonin-protein kinase (MT-PK) also known as myotonic dystrophy protein kinase (MDPK) or dystrophia myotonica protein kinase (DMPK) is an enzyme that in humans is encoded by the DMPK gene.

<span class="mw-page-title-main">Endothelin receptor type B</span> Protein-coding gene in the species Homo sapiens

Endothelin receptor type B, (ET-B) is a protein that in humans is encoded by the EDNRB gene.

<span class="mw-page-title-main">Retinitis pigmentosa GTPase regulator</span> Protein-coding gene in the species Homo sapiens

X-linked retinitis pigmentosa GTPase regulator is a GTPase-binding protein that in humans is encoded by the RPGR gene. The gene is located on the X-chromosome and is commonly associated with X-linked retinitis pigmentosa (XLRP). In photoreceptor cells, RPGR is localized in the connecting cilium which connects the protein-synthesizing inner segment to the photosensitive outer segment and is involved in the modulation of cargo trafficked between the two segments.

<span class="mw-page-title-main">MID1</span> Protein-coding gene in humans

MID1 is a protein that belongs to the Tripartite motif family (TRIM) and is also known as TRIM18. The MID1 gene is located on the short arm of the X chromosome and loss-of-function mutations in this gene are causative of the X-linked form of a rare developmental disease, Opitz G/BBB Syndrome.

<span class="mw-page-title-main">PQBP1</span> Protein-coding gene in the species Homo sapiens

Polyglutamine-binding protein 1 (PQBP1) is a protein that in humans is encoded by the PQBP1 gene.

<i>MLX</i> (gene) Protein-coding gene in the species Homo sapiens

Max-like protein X is a protein that in humans is encoded by the MLX gene.

<span class="mw-page-title-main">MTMR2</span> Protein-coding gene in the species Homo sapiens

Myotubularin-related protein 2 also known as phosphatidylinositol-3,5-bisphosphate 3-phosphatase or phosphatidylinositol-3-phosphate phosphatase is a protein that in humans is encoded by the MTMR2 gene.

<span class="mw-page-title-main">Carbohydrate-responsive element-binding protein</span> Protein-coding gene in the species Homo sapiens

Carbohydrate-responsive element-binding protein (ChREBP) also known as MLX-interacting protein-like (MLXIPL) is a protein that in humans is encoded by the MLXIPL gene. The protein name derives from the protein's interaction with carbohydrate response element sequences of DNA.

<span class="mw-page-title-main">AGGF1</span> Protein-coding gene in the species Homo sapiens

Angiogenic factor with G patch and FHA domains 1 is a protein that in humans is encoded by the AGGF1 gene.

<span class="mw-page-title-main">NHLRC1</span> Protein-coding gene in the species Homo sapiens

NHL repeat-containing protein 1 is a protein that in humans is encoded by the NHLRC1 gene.

X-linked intellectual disability refers to medical disorders associated with X-linked recessive inheritance that result in intellectual disability.

<span class="mw-page-title-main">Fig4</span> Protein-coding gene in the species Homo sapiens

Polyphosphoinositide phosphatase also known as phosphatidylinositol 3,5-bisphosphate 5-phosphatase or SAC domain-containing protein 3 (Sac3) is an enzyme that in humans is encoded by the FIG4 gene. Fig4 is an abbreviation for Factor-Induced Gene.

References

  1. 1 2 Ortolano S, Vieitez I, Agis-Balboa RC, Spuch C (January 2014). "Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease". Molecular Brain. 7: 7. doi:10.1186/1756-6606-7-7. PMC   3917365 . PMID   24472629.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  2. Ganesh S, Agarwala KL, Ueda K, Akagi T, Shoda K, Usui T, Hashikawa T, Osada H, Delgado-Escueta AV, Yamakawa K (September 2000). "Laforin, defective in the progressive myoclonus epilepsy of Lafora type, is a dual-specificity phosphatase associated with polyribosomes". Human Molecular Genetics. 9 (15): 2251–61. doi: 10.1093/oxfordjournals.hmg.a018916 . PMID   11001928.
  3. "CAZy - CBM".
  4. Aguado C, Sarkar S, Korolchuk VI, Criado O, Vernia S, Boya P, Sanz P, de Córdoba SR, Knecht E, Rubinsztein DC (July 2010). "Laforin, the most common protein mutated in Lafora disease, regulates autophagy". Human Molecular Genetics. 19 (14): 2867–76. doi:10.1093/hmg/ddq190. PMC   2893813 . PMID   20453062.