Lamosite

Last updated

Lamosite is an olive-gray brown or dark gray to brownish black lacustrine-type oil shale, in which the chief organic constituent is lamalginite derived from lacustrine planktonic algae. In minor scale it also consists of vitrinite, inertinite, telalginite, and bitumen. [1]

Lacustrine Plains are lakes that get filled by incoming sediment. Over time, the water may drain from the lake, leaving the deposited sediments behind. This can be caused by natural drainage, evaporation or other geophysical processes.

Oil shale Organic-rich fine-grained sedimentary rock containing kerogen

Oil shale is an organic-rich fine-grained sedimentary rock containing kerogen from which liquid hydrocarbons can be produced, called shale oil. Shale oil is a substitute for conventional crude oil; however, extracting shale oil from oil shale is more costly than the production of conventional crude oil both financially and in terms of its environmental impact. Deposits of oil shale occur around the world, including major deposits in the United States. A 2016 estimate of global deposits set the total world resources of oil shale equivalent of 6.05 trillion barrels of oil in place.

Lamalginite is a structured organic matter (alginite) in sapropel, composed of thin-walled colonial or unicellular algae that occur as distinct laminae, cryptically interbedded with mineral matter. It displays few or no recognisable biologic structures. Lamalginite fluoresce brightly in shades of yellow under blue/ultraviolet light. The term of lamalginite was introduced by Adrian C. Hutton of the University of Wollongong.

Lamosite deposits are the most abundant and largest oil shale deposits beside of marinite deposits. The largest lacustrine-type oil shale deposits are the Green River Formation in western United States, a number deposits in eastern Queensland, Australia, and the New Brunswick Albert Formation and several other deposits in Canada. [1]

Marinite is a gray to dark-gray or black oil shale of marine origin in which the chief organic components are lamalginite and bituminite derived from marine phytoplankton, with varied admixtures of bitumen, telalginite and vitrinite. Marinite deposits are the most abundant oil-shale deposits. They are generally widespread but at the same time they are relatively thin and often of restricted economic importance. Typical environments for marinite deposits are found in epeiric seas.

Green River Formation geologic formation

The Green River Formation is an Eocene geologic formation that records the sedimentation in a group of intermountain lakes in three basins along the present-day Green River in Colorado, Wyoming, and Utah. The sediments are deposited in very fine layers, a dark layer during the growing season and a light-hue inorganic layer in the dry season. Each pair of layers is called a varve and represents one year. The sediments of the Green River Formation present a continuous record of six million years. The mean thickness of a varve here is 0.18 mm, with a minimum thickness of 0.014 mm and maximum of 9.8 mm.

United States Federal republic in North America

The United States of America (USA), commonly known as the United States or America, is a country composed of 50 states, a federal district, five major self-governing territories, and various possessions. At 3.8 million square miles, the United States is the world's third or fourth largest country by total area and is slightly smaller than the entire continent of Europe's 3.9 million square miles. With a population of over 327 million people, the U.S. is the third most populous country. The capital is Washington, D.C., and the largest city by population is New York City. Forty-eight states and the capital's federal district are contiguous in North America between Canada and Mexico. The State of Alaska is in the northwest corner of North America, bordered by Canada to the east and across the Bering Strait from Russia to the west. The State of Hawaii is an archipelago in the mid-Pacific Ocean. The U.S. territories are scattered about the Pacific Ocean and the Caribbean Sea, stretching across nine official time zones. The extremely diverse geography, climate, and wildlife of the United States make it one of the world's 17 megadiverse countries.

See also

Cannel coal type of bituminous coal

Cannel coal or candle coal is a type of bituminous coal, also classified as terrestrial type oil shale. Due to its physical morphology and low mineral content cannel coal is considered to be coal but by its texture and composition of the organic matter it is considered to be oil shale. Although historically the term cannel coal has been used interchangeably with boghead coal, a more recent classification system restricts cannel coal to terrestrial origin, and boghead coal to lacustrine environments.

Kukersite light-brown marine type oil shale of Ordovician age

Kukersite is a light-brown marine type oil shale of Ordovician age. It is found in the Baltic Oil Shale Basin in Estonia and North-West Russia. It is of the lowest Upper Ordovician formation, formed some 460 million years ago. It was named after the German name of the Kukruse Manor in the north-east of Estonia by the Russian paleobotanist Mikhail Zalessky in 1917. Some minor kukersite resources occur in sedimentary basins of Michigan, Illinois, Wisconsin, North Dakota, and Oklahoma in North America and in Amadeus and Canning basins Australia.

Tasmanite is a sedimentary rock type almost entirely consisting of the prasinophyte alga Tasmanites. It is commonly associated with high-latitude, nutrient-rich, marginal marine settings find in Tasmania. It is classified as marine type oil shale. It is found in many oil-prone source rocks and, when present, contributes to the oil generation potential of the rock. Some sources also produce a red-brown translucent material similar to amber which has also been called tasmanite.

Related Research Articles

Torbanite, also known as boghead coal, is a variety of fine-grained black oil shale. It usually occurs as lenticular masses, often associated with deposits of Permian coals. Torbanite is classified as lacustrine type oil shale.

Oil shale geology

Oil shale geology is a branch of geologic sciences which studies the formation and composition of oil shales–fine-grained sedimentary rocks containing significant amounts of kerogen, and belonging to the group of sapropel fuels. Oil shale formation takes place in a number of depositional settings and has considerable compositional variation. Oil shales can be classified by their composition or by their depositional environment. Much of the organic matter in oil shales is of algal origin, but may also include remains of vascular land plants. Three major type of organic matter (macerals) in oil shale are telalginite, lamalginite, and bituminite. Some oil shale deposits also contain metals which include vanadium, zinc, copper, and uranium.

Oil shale reserves refers to oil shale resources that are economically recoverable under current economic conditions and technological abilities. Oil shale deposits range from small presently economically unrecoverable to large potentially recoverable resources. Defining oil shale reserves is difficult, as the chemical composition of different oil shales, as well as their kerogen content and extraction technologies, vary significantly. The economic feasibility of shale oil extraction is highly dependent on the price of conventional oil; if the price of crude oil per barrel is less than the production price per barrel of shale oil, it is uneconomic.

Pierre Shale

The Pierre Shale is a geologic formation or series in the Upper Cretaceous which occurs east of the Rocky Mountains in the Great Plains, from Pembina Valley in Canada to New Mexico.

In petroleum geology, source rock refers to rocks from which hydrocarbons have been generated or are capable of being generated. They form one of the necessary elements of a working petroleum system. They are organic-rich sediments that may have been deposited in a variety of environments including deep water marine, lacustrine and deltaic. Oil shale can be regarded as an organic-rich but immature source rock from which little or no oil has been generated and expelled. Subsurface source rock mapping methodologies make it possible to identify likely zones of petroleum occurrence in sedimentary basins as well as shale gas plays.

Oil shale in China is an important source of unconventional oil. A total Chinese oil shale resource amounts of 720 billion tonnes, located in 80 deposits of 47 oil shale basins. This is equal to 48 billion tonnes of shale oil. At the same time there are speculations that the actual resource may even exceed the oil shale resource of the United States.

Oil shale in Jordan

Oil shale in Jordan represents a significant resource. Oil shale deposits in Jordan underlie more than 70% of Jordanian territory. The total resources amounts to 31 billion tonnes of oil shale.

Nonesuch Shale

The Nonesuch Shale is a Proterozoic geologic formation that outcrops in Michigan and Wisconsin, United States, but has been found by drill holes to extend in the subsurface as far southwest as Iowa.

The Alum Shale Formation is a formation of black shale of Middle Cambrian to Tremadocian in age found in southern Scandinavia. It is shale or clay slate containing pyrite. Decomposition of pyrite by weathering forms sulfuric acid, which acts on potash and alumina constituents to form alum, which often occurs as efflorescences on the rock outcrop.

The New Albany Shale is an organic-rich geologic formation of Devonian and Mississippian age in the Illinois Basin of the United States. It is a major source of hydrocarbons.

Oil shale in Morocco represents a significant potential resource. The ten known oil shale deposits in Morocco contain over 53.381 billion barrels of shale oil. Although Moroccan oil shale has been studied since the 1930s and several pilot plants have extracted shale oil from the local formations, commercial extraction was not underway as of 2011.

Oil shale in Israel

Oil shale in Israel is widespread but an undeveloped resource, largely because of economic and technological constraints. Israeli oil shales belong to the group of Upper Cretaceous marinites. Although oil-shale deposits may lie under as much as 15% of the country, only a small part of these are mineable. According to the Geological Survey of Israel, deposits that could have the biggest economic potential are located in the northern Negev, the largest being the Rotem-Yamin formation. For several decades, oil shale was used for small-scale power generation at Mishor Rotem. Several Israeli companies have proposed shale oil extraction; testing of the viability of the oil shale industry is currently being undertaken by Israel Energy Initiatives. However, as of 2011, there are no commercial oil shale operations in Israel.

There are oil shale deposits in Australia which range from small deposits to large reserves. Deposits, varying by their age and origin, are located in about a third of eastern Australia. In 2012, the demonstrated oil shale reserves were estimated at 58 billion tonnes. The easiest to recover deposits are located in Queensland.

Lacustrine deposits are sedimentary rock formations which formed in the bottom of ancient lakes. A common characteristic of lacustrine deposits is that a river or stream channel has carried sediment into the basin. Lacustrine deposits form in all lake types including rift graben lakes, oxbow lakes, glacial lakes, and crater lakes. Lacustrine environments, like seas, are large bodies of water. They share similar sedimentary deposits which are mainly composed of low-energy particle sizes. Lacustrine deposits are typically very well sorted with highly laminated beds of silts, clays, and occasionally carbonates. In regards to geologic time, lakes are temporary and once they no longer receive water, they dry up and leave a formation.

References

  1. 1 2 Dyni, John R. (2006). "Geology and resources of some world oil-shale deposits. Scientific Investigations Report 2005–5294" (PDF). U.S. Department of the Interior. U.S. Geological Survey. Retrieved 2008-07-17.