Lanthanum cuprate

Last updated
Lanthanum cuprate
Sr 2 Ru O 4 Layered Perovskite Structure.svg
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/Cu.2La.4O/q+2;2*+3;4*-2
    Key: VTQXYJGFVOFCDC-UHFFFAOYSA-N
  • [O-2].[O-2].[O-2].[O-2].[Cu+2].[La+3].[La+3]
Properties
CuLa2O4
Molar mass 405.353 g·mol−1
Appearancesolid
Density 7.05 g/cm3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Lanthanum cuprate usually refers to the inorganic compound with the formula CuLa2O4. The name implies that the compound consists of a cuprate (CuOn]2n-) salt of lanthanum (La3+). In fact it is a highly covalent solid. It is prepared by high temperature reaction of lanthanum oxide and copper(II) oxide follow by annealing under oxygen. [1]

The material adopts a tetragonal structure related to potassium tetrafluoronickelate (K2NiF4), which is orthorhombic. [1] [2] Replacement of some lanthanum by barium gives the quaternary phase CuLa1.85Ba0.15O4, called lanthanum barium copper oxide. That doped material displays superconductivity at −243 °C (30.1 K), which at the time of its discovery was a high temperature. This discovery initiated research on cuprate superconductors and was the basis of a Nobel Prize in Physics to Georg Bednorz and K. Alex Müller. [3]

Related Research Articles

<span class="mw-page-title-main">Superconductivity</span> Electrical conductivity with exactly zero resistance

Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.

Unconventional superconductors are materials that display superconductivity which does not conform to conventional BCS theory or its extensions.

<span class="mw-page-title-main">High-temperature superconductivity</span> Superconductive behavior at temperatures much higher than absolute zero

High-temperature superconductors are defined as materials with critical temperature above 77 K, the boiling point of liquid nitrogen. They are only "high-temperature" relative to previously known superconductors, which function at even colder temperatures, close to absolute zero. The "high temperatures" are still far below ambient, and therefore require cooling. The first break through of high-temperature superconductor was discovered in 1986 by IBM researchers Georg Bednorz and K. Alex Müller. Although the critical temperature is around 35.1 K, this new type of superconductor was readily modified by Ching-Wu Chu to make the first high-temperature superconductor with critical temperature 93 K. Bednorz and Müller were awarded the Nobel Prize in Physics in 1987 "for their important break-through in the discovery of superconductivity in ceramic materials". Most high-Tc materials are type-II superconductors.

A room-temperature superconductor is a hypothetical material capable of displaying superconductivity at temperatures above 0 °C, which are commonly encountered in everyday settings. As of 2023, the material with the highest accepted superconducting temperature was highly pressurized lanthanum decahydride, whose transition temperature is approximately 250 K (−23 °C) at 200 GPa.

<span class="mw-page-title-main">Yttrium barium copper oxide</span> Chemical compound

Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen [77 K ] at about 93 K.

Cuprates are a class of compounds that contain copper (Cu) atom(s) in an anion. They can be broadly categorized into two main types:

The Woodstock of physics was the popular name given by physicists to the marathon session of the American Physical Society’s meeting on March 18, 1987, which featured 51 presentations of recent discoveries in the science of high-temperature superconductors. Various presenters anticipated that these new materials would soon result in revolutionary technological applications, but in the three subsequent decades, this proved to be overly optimistic. The name is a reference to the 1969 Woodstock Music and Art Festival.

In chemistry, a plumbate often refers to compounds that can be viewed as derivatives of the hypothetical PbO2−3 anion.

<span class="mw-page-title-main">Copper chromite</span> Chemical compound

Copper chromite is an inorganic compound with the formula Cu2Cr2O5. It is a black solid that is used to catalyze reactions in organic synthesis.

<span class="mw-page-title-main">Bismuth strontium calcium copper oxide</span> Family of high-temperature superconductors

Bismuth strontium calcium copper oxide (BSCCO, pronounced bisko), is a type of cuprate superconductor having the generalized chemical formula Bi2Sr2Can−1CunO2n+4+x, with n = 2 being the most commonly studied compound (though n = 1 and n = 3 have also received significant attention). Discovered as a general class in 1988, BSCCO was the first high-temperature superconductor which did not contain a rare-earth element.

<span class="mw-page-title-main">Georg Bednorz</span> German physicist (born 1950)

Johannes Georg Bednorz is a German physicist who, together with K. Alex Müller, discovered high-temperature superconductivity in ceramics, for which they shared the 1987 Nobel Prize in Physics.

<span class="mw-page-title-main">K. Alex Müller</span> Swiss physicist and Nobel laureate (1927–2023)

Karl Alexander Müller was a Swiss physicist and Nobel laureate. He received the Nobel Prize in Physics in 1987 with Georg Bednorz for their work in superconductivity in ceramic materials.

Cuprate superconductors are a family of high-temperature superconducting materials made of layers of copper oxides (CuO2) alternating with layers of other metal oxides, which act as charge reservoirs. At ambient pressure, cuprate superconductors are the highest temperature superconductors known. However, the mechanism by which superconductivity occurs is still not understood.

<span class="mw-page-title-main">Thallium barium calcium copper oxide</span> Family of high-temperature superconductors

Thallium barium calcium copper oxide, or TBCCO (pronounced "tibco"), is a family of high-temperature superconductors having the generalized chemical formula TlmBa2Can−1CunO2n+m+2.

In chemistry, oxypnictides are a class of materials composed of oxygen, a pnictogen and one or more other elements. Although this group of compounds has been recognized since 1995, interest in these compounds increased dramatically after the publication of the superconducting properties of LaOFeP and LaOFeAs which were discovered in 2006 and 2008. In these experiments the oxide was partly replaced by fluoride.

<span class="mw-page-title-main">Lanthanum barium copper oxide</span> High temperature superconductor

Lanthanum barium copper oxide, or LBCO, is an inorganic compound with the formula CuBa0.15La1.85O4. It is a black solid produced by heating an intimate mixture of barium oxide, copper(II) oxide, and lanthanum oxide in the presence of oxygen. The material was discovered in 1986 and was the first high temperature superconductor. Johannes Georg Bednorz and K. Alex Müller shared the 1987 Nobel Prize in physics for the discovery that this material exhibits superconductivity at the then unusually high temperature. This finding led to intense and fruitful efforts to generate other cuprate superconductors.

Superstripes is a generic name for a phase with spatial broken symmetry that favors the onset of superconducting or superfluid quantum order. This scenario emerged in the 1990s when non-homogeneous metallic heterostructures at the atomic limit with a broken spatial symmetry have been found to favor superconductivity. Before a broken spatial symmetry was expected to compete and suppress the superconducting order. The driving mechanism for the amplification of the superconductivity critical temperature in superstripes matter has been proposed to be the shape resonance in the energy gap parameters ∆n that is a type of Fano resonance for coexisting condensates.

<span class="mw-page-title-main">Rare-earth barium copper oxide</span> Chemical compounds known for exhibiting high temperature superconductivity

Rare-earth barium copper oxide (ReBCO) is a family of chemical compounds known for exhibiting high-temperature superconductivity (HTS). ReBCO superconductors have the potential to sustain stronger magnetic fields than other superconductor materials. Due to their high critical temperature and critical magnetic field, this class of materials are proposed for use in technical applications where conventional low-temperature superconductors do not suffice. This includes magnetic confinement fusion reactors such as the ARC reactor, allowing a more compact and potentially more economical construction, and superconducting magnets to use in future particle accelerators to come after the Large Hadron Collider, which utilizes low-temperature superconductors.

<span class="mw-page-title-main">Thomas Maurice Rice</span> Theoretical physicist and professor

Thomas Maurice Rice, known professionally as Maurice Rice, is an Irish theoretical physicist specializing in condensed matter physics.

Bernard Raveau, born in 1940, is a French researcher in materials science, professor emeritus at the University of Caen Normandy, member of the French Academy of sciences.

References

  1. 1 2 Longo, J.M.; Raccah, P.M. (1973). "The structure of La2CuO4 and LaSrVO4". Journal of Solid State Chemistry. 6 (4): 526–531. Bibcode:1973JSSCh...6..526L. doi:10.1016/S0022-4596(73)80010-6.
  2. Grande, B.; Müller-Buschbaum, Hk.; Schweizer, M. (1977). "Über Oxocuprate. XV zur Kristallstruktur von Seltenerdmetalloxocupraten: La2CuO4, Gd2CuO4". Zeitschrift für Anorganische und Allgemeine Chemie. 428: 120–124. doi:10.1002/zaac.19774280116.
  3. Bednorz, J. G.; Müller, K. A. (1986). "Possible High Tc Superconductivity in the Ba-La-Cu-O System". Zeitschrift für Physik B: Condensed Matter. 64 (2): 189–193. Bibcode:1986ZPhyB..64..189B. doi:10.1007/BF01303701. S2CID   118314311.