Leinster group

Last updated

In mathematics, a Leinster group is a finite group whose order equals the sum of the orders of its proper normal subgroups. [1] [2]

Contents

The Leinster groups are named after Tom Leinster, a mathematician at the University of Edinburgh, who wrote about them in a paper written in 1996 but not published until 2001. [3] He called them "perfect groups" [3] and later "immaculate groups", [4] but they were renamed as the Leinster groups by De Medts & Maróti (2013) because "perfect group" already had a different meaning (a group that equals its commutator subgroup). [2]

Leinster groups give a group-theoretic way of analyzing the perfect numbers and of approaching the still-unsolved problem of the existence of odd perfect numbers. For a cyclic group, the orders of the subgroups are just the divisors of the order of the group, so a cyclic group is a Leinster group if and only if its order is a perfect number. [2] More strongly, as Leinster proved, an abelian group is a Leinster group if and only if it is a cyclic group whose order is a perfect number. [3] Moreover Leinster showed that dihedral Leinster groups are in one-to-one correspondence with odd perfect numbers, so the existence of odd perfect numbers is equivalent to the existence of dihedral Leinster groups.

Examples

The cyclic groups whose order is a perfect number are Leinster groups. [3]

It is possible for a non-abelian Leinster group to have odd order; an example of order 355433039577 was constructed by François Brunault. [1] [4]

Other examples of non-abelian Leinster groups include certain groups of the form , where is an alternating group and is a cyclic group. For instance, the groups , [4] , and [5] are Leinster groups. The same examples can also be constructed with symmetric groups, i.e., groups of the form , such as . [3]

The possible orders of Leinster groups form the integer sequence

6, 12, 28, 30, 56, 360, 364, 380, 496, 760, 792, 900, 992, 1224, ... (sequence A086792 in the OEIS )

It is unknown whether there are infinitely many Leinster groups.

Properties

Related Research Articles

Abelian group Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.

<span class="texhtml mvar" style="font-style:italic;">p</span>-group A group in which the order of every element is a power of p

In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.

Cyclic group Mathematical group that can be generated as the set of powers of a single element

In group theory, a branch of abstract algebra, a cyclic group or monogenous group is a group that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as a power of g in multiplicative notation, or as a multiple of g in additive notation. This element g is called a generator of the group.

Sylow theorems Theorems that help decompose a finite group based on prime factors of its order

In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups.

Dihedral group Group of symmetries of a regular polygon

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.

Solvable group

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

In the theory of abelian groups, the torsion subgroupAT of an abelian group A is the subgroup of A consisting of all elements that have finite order. An abelian group A is called a torsion group if every element of A has finite order and is called torsion-free if every element of A except the identity is of infinite order.

Nilpotent group Group that has an upper central series terminating with G

In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, its central series is of finite length or its lower central series terminates with {1}.

Dicyclic group

In group theory, a dicyclic group is a particular kind of non-abelian group of order 4n. It is an extension of the cyclic group of order 2 by a cyclic group of order 2n, giving the name di-cyclic. In the notation of exact sequences of groups, this extension can be expressed as:

In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula

Glossary of group theory

A group is a set together with an associative operation which admits an identity element and such that every element has an inverse.

In mathematics, more specifically in group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no non-trivial abelian quotients. In symbols, a perfect group is one such that G(1) = G, or equivalently one such that Gab = {1}.

In mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete.

In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group. These concepts are named after the mathematician J. H. C. Whitehead.

Schur multiplier

In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group of a group G. It was introduced by Issai Schur (1904) in his work on projective representations.

Cauchys theorem (group theory) Existence of group elements of prime order

In mathematics, specifically group theory, Cauchy's theorem states that if G is a finite group and p is a prime number dividing the order of G, then G contains an element of order p. That is, there is x in G such that p is the smallest positive integer with xp = e, where e is the identity element of G. It is named after Augustin-Louis Cauchy, who discovered it in 1845.

In mathematics, especially in the area of abstract algebra that studies infinite groups, the adverb virtually is used to modify a property so that it need only hold for a subgroup of finite index. Given a property P, the group G is said to be virtually P if there is a finite index subgroup such that H has property P.

In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups:

In mathematics, or more specifically group theory, the omega and agemo subgroups described the so-called "power structure" of a finite p-group. They were introduced in where they were used to describe a class of finite p-groups whose structure was sufficiently similar to that of finite abelian p-groups, the so-called, regular p-groups. The relationship between power and commutator structure forms a central theme in the modern study of p-groups, as exemplified in the work on uniformly powerful p-groups.

References

  1. 1 2 3 4 Baishya, Sekhar Jyoti (2014), "Revisiting the Leinster groups", Comptes Rendus Mathématique , 352 (1): 1–6, doi:10.1016/j.crma.2013.11.009, MR   3150758 .
  2. 1 2 3 De Medts, Tom; Maróti, Attila (2013), "Perfect numbers and finite groups" (PDF), Rendiconti del Seminario Matematico della Università di Padova, 129: 17–33, doi: 10.4171/RSMUP/129-2 , MR   3090628 .
  3. 1 2 3 4 5 6 7 Leinster, Tom (2001), "Perfect numbers and groups" (PDF), Eureka , 55: 17–27, arXiv: math/0104012 , Bibcode:2001math......4012L
  4. 1 2 3 4 Leinster, Tom (2011), "Is there an odd-order group whose order is the sum of the orders of the proper normal subgroups?", MathOverflow . Accepted answer by François Brunault, cited by Baishya (2014).
  5. Weg, Yanior (2018), "Solutions of the equation (m! + 2)σ(n) = 2nm! where 5 ≤ m", math.stackexchange.com . Accepted answer by Julian Aguirre.