Lie–Kolchin theorem

Last updated

In mathematics, the Lie–Kolchin theorem is a theorem in the representation theory of linear algebraic groups; Lie's theorem is the analog for linear Lie algebras.

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in terms of matrix addition and matrix multiplication. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation is matrix multiplication.

Linear algebraic group

In mathematics, a linear algebraic group is a subgroup of the group of invertible n×n matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation MTM = 1 where MT is the transpose of M.

Contents

It states that if G is a connected and solvable linear algebraic group defined over an algebraically closed field and

Connected space Topological space that is connected

In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint nonempty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.

Solvable group group that can be constructed from abelian groups using extensions; a group whose derived series terminates in the trivial subgroup

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

Field (mathematics) Algebraic structure

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined, and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure, which is widely used in algebra, number theory and many other areas of mathematics.

a representation on a nonzero finite-dimensional vector space V, then there is a one-dimensional linear subspace L of V such that

In the mathematical field of representation theory, group representations describe abstract groups in terms of linear transformations of vector spaces; in particular, they can be used to represent group elements as matrices so that the group operation can be represented by matrix multiplication. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system.

Vector space Mathematical structure which is fundamental for linear algebra

A vector space is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below.

That is, ρ(G) has an invariant line L, on which G therefore acts through a one-dimensional representation. This is equivalent to the statement that V contains a nonzero vector v that is a common (simultaneous) eigenvector for all .

It follows directly that every irreducible finite-dimensional representation of a connected and solvable linear algebraic group G has dimension one. In fact, this is another way to state the Lie–Kolchin theorem.

Irreducible representation Type of group and algebra representation

In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation or irrep of an algebraic structure is a nonzero representation that has no proper subrepresentation closed under the action of .

Lie's theorem states that any nonzero representation of a solvable Lie algebra on a finite dimensional vector space over an algebraically closed field of characteristic 0 has a one-dimensional invariant subspace.

The result for Lie algebras was proved by SophusLie  ( 1876 ) and for algebraic groups was proved by EllisKolchin  ( 1948 ,p.19).

Sophus Lie Norwegian mathematician

Marius Sophus Lie was a Norwegian mathematician. He largely created the theory of continuous symmetry and applied it to the study of geometry and differential equations.

Ellis Robert Kolchin was an American mathematician at Columbia University. Kolchin earned a doctorate in mathematics from Columbia University in 1941 under supervision of Joseph Ritt. He was awarded a Guggenheim Fellowship in 1954 and 1961.

The Borel fixed point theorem generalizes the Lie–Kolchin theorem.

Triangularization

Sometimes the theorem is also referred to as the Lie–Kolchin triangularization theorem because by induction it implies that with respect to a suitable basis of V the image has a triangular shape; in other words, the image group is conjugate in GL(n,K) (where n = dim V) to a subgroup of the group T of upper triangular matrices, the standard Borel subgroup of GL(n,K): the image is simultaneously triangularizable.

The theorem applies in particular to a Borel subgroup of a semisimple linear algebraic group G.

Lie's theorem

Lie's theorem states that if V is a finite dimensional vector space over an algebraically closed field of characteristic 0, then for any solvable Lie algebra of endomorphisms of V there is a vector that is an eigenvector for every element of the Lie algebra.

Applying this result repeatedly shows that there is a basis for V such that all elements of the Lie algebra are represented by upper triangular matrices. This is a generalization of the result of Frobenius that commuting matrices are simultaneously upper triangularizable, as commuting matrices form an abelian Lie algebra, which is a fortiori solvable.

A consequence of Lie's theorem is that any finite dimensional solvable Lie algebra over a field of characteristic 0 has a nilpotent derived algebra.

Counter-examples

If the field K is not algebraically closed, the theorem can fail. The standard unit circle, viewed as the set of complex numbers of absolute value one is a one-dimensional commutative (and therefore solvable) linear algebraic group over the real numbers which has a two-dimensional representation into the special orthogonal group SO(2) without an invariant (real) line. Here the image of is the orthogonal matrix

For algebraically closed fields of characteristic p>0 Lie's theorem holds provided the dimension of the representation is less than p, but can fail for representations of dimension p. An example is given by the 3-dimensional nilpotent Lie algebra spanned by 1, x, and d/dx acting on the p-dimensional vector space k[x]/(xp), which has no eigenvectors. Taking the semidirect product of this 3-dimensional Lie algebra by the p-dimensional representation (considered as an abelian Lie algebra) gives a solvable Lie algebra whose derived algebra is not nilpotent.

Related Research Articles

Lie algebra A vector space with an alternating binary operation satisfying the Jacobi identity.

In mathematics, a Lie algebra is a vector space together with a non-associative, alternating bilinear map , called the Lie bracket, satisfying the Jacobi identity.

Lie group Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold, with the property that the group operations are smooth. Lie groups are named after Norwegian mathematician Sophus Lie, who laid the foundations of the theory of continuous transformation groups.

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

Representation of a Lie group Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

Lie algebra representation homomorphism of Lie algebras whose codomain is the endomorphism algebra of a vector space

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group

In mathematics, and in particular the theory of group representations, the regular representation of a group G is the linear representation afforded by the group action of G on itself by translation.

Triangular matrix special kind of square matrix

In the mathematical discipline of linear algebra, a triangular matrix is a special kind of square matrix. A square matrix is called lower triangular if all the entries above the main diagonal are zero. Similarly, a square matrix is called upper triangular if all the entries below the main diagonal are zero. A triangular matrix is one that is either lower triangular or upper triangular. A matrix that is both upper and lower triangular is called a diagonal matrix.

In mathematics, a Casimir element is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir element of the three-dimensional rotation group.

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear transformation from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N and φ is a self-map. The lemma is named after Issai Schur who used it to prove Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which is due to Jacques Dixmier.

In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.

In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally, from higher sheaf cohomology groups associated to such bundles. It is built on the earlier Borel–Weil theorem of Armand Borel and André Weil, dealing just with the space of sections, the extension to higher cohomology groups being provided by Raoul Bott. One can equivalently, through Serre's GAGA, view this as a result in complex algebraic geometry in the Zariski topology.

Cartan subalgebra Nilpotent subalgebra of a Lie algebra

In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis.

Semisimple Lie algebra Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras, i.e., non-abelian Lie algebras whose only ideals are {0} and itself. It is important to emphasize that a one-dimensional Lie algebra is by definition not considered a simple Lie algebra, even though such an algebra certainly has no nontrivial ideals. Thus, one-dimensional algebras are not allowed as summands in a semisimple Lie algebra.

In representation theory, a branch of mathematics, Engel's theorem is one of the basic theorems in the theory of Lie algebras; it asserts that for a Lie algebra two concepts of nilpotency are identical. A useful form of the theorem says that if a Lie algebra L of matrices consists of nilpotent matrices, then they can all be simultaneously brought to a strictly upper triangular form. The theorem is named after the mathematician Friedrich Engel, who sketched a proof of it in a letter to Wilhelm Killing dated 20 July 1890. Engel's student K.A. Umlauf gave a complete proof in his 1891 dissertation, reprinted as.

Solvable Lie algebra

In mathematics, a Lie algebra is solvable if its derived series terminates in the zero subalgebra. The derived Lie algebra is the subalgebra of , denoted

In mathematics, nilpotent orbits are generalizations of nilpotent matrices that play an important role in representation theory of real and complex semisimple Lie groups and semisimple Lie algebras.

References