Light-front quantization applications

Last updated
The light cone of special relativity. Light-front quantization uses light-front (or light-cone) coordinates to select an initial surface that is tangential to the light cone. Equal-time quantization uses an initial surface that is horizontal, labeled here as the "hypersurface of the present". World line.svg
The light cone of special relativity. Light-front quantization uses light-front (or light-cone) coordinates to select an initial surface that is tangential to the light cone. Equal-time quantization uses an initial surface that is horizontal, labeled here as the "hypersurface of the present".

The light-front quantization [1] [2] [3] of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, [4] where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle z} is a Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others. The basic formalism is discussed elsewhere.

Contents

There are many applications of this technique, some of which are discussed below. Essentially, the analysis of any relativistic quantum system can benefit from the use of light-front coordinates and the associated quantization of the theory that governs the system.

Nuclear reactions

The light-front technique was brought into nuclear physics by the pioneering papers of Frankfurt and Strikman. [5] [6] The emphasis was on using the correct kinematic variables (and the corresponding simplifications achieved) in making correct treatments of high-energy nuclear reactions. This sub-section focuses on only a few examples.

Calculations of deep inelastic scattering from nuclei require knowledge of nucleon distribution functions within the nucleus. These functions give the probability that a nucleon of momentum carries a given fraction of the plus component of the nuclear momentum, , .

Nuclear wave functions have been best determined using the equal-time framework. It therefore seems reasonable to see if one could re-calculate nuclear wave functions using the light front formalism. There are several basic nuclear structure problems which must be handled to establish that any given method works. It is necessary to compute the deuteron wave function, solve mean-field theory (basic nuclear shell model) for infinite nuclear matter and for finite-sized nuclei, and improve the mean-field theory by including the effects of nucleon-nucleon correlations. Much of nuclear physics is based on rotational invariance, but manifest rotational invariance is lost in the light front treatment. Thus recovering rotational invariance is very important for nuclear applications.

The simplest version of each problem has been handled. A light-front treatment of the deuteron was accomplished by Cooke and Miller, [7] [8] which stressed recovering rotational invariance. [9] Mean-field theory for finite nuclei was handled Blunden et al. [10] [11] [12] Infinite nuclear matter was handled within mean-field theory [13] [14] and also including correlations. [15] [16] Applications to deep inelastic scattering were made by Miller and Smith. [17] [18] [19] The principal physics conclusion is that the EMC effect (nuclear modification of quark distribution functions) cannot be explained within the framework of conventional nuclear physics. Quark effects are needed. Most of these developments are discussed in a review by Miller. [20]

There is a new appreciation that initial and final-state interaction physics, which is not intrinsic to the hadron or nuclear light-front wave functions, must be addressed in order to understand phenomena such as single-spin asymmetries, diffractive processes, and nuclear shadowing. [21] This motivates extending LFQCD to the theory of reactions and to investigate high-energy collisions of hadrons. Standard scattering theory in Hamiltonian frameworks can provide valuable guidance for developing a LFQCD-based analysis of high-energy reactions.

Exclusive processes

One of the most important areas of application of the light-front formalism are exclusive hadronic processes. "Exclusive processes" are scattering reactions in which the kinematics of the initial state and final state particles are measured and thus completely specified; this is in contrast to "inclusive" reactions where one or more particles in the final state are not directly observed. Prime examples are the elastic and inelastic form factors measured in the exclusive lepton-hadron scattering processes such as In inelastic exclusive processes, the initial and final hadrons can be different, such as . Other examples of exclusive reactions are Compton scattering , pion photoproduction and elastic hadron scattering such as . "Hard exclusive processes" refer to reactions in which at least one hadron scatters to large angles with a significant change in its transverse momentum.

Exclusive processes provide a window into the bound-state structure of hadrons in QCD as well as the fundamental processes which control hadron dynamics at the amplitude level. The natural calculus for describing the bound-state structure of relativistic composite systems, needed for describing exclusive amplitudes, is the light-front Fock expansion which encodes the multi-quark, gluonic, and color correlations of a hadron in terms of frame-independent wave functions. In hard exclusive processes, in which hadrons receive a large momentum transfer, perturbative QCD leads to factorization theorems [22] which separate the physics of hadronic bound-state structure from that of the relevant quark and gluonic hard-scattering reactions which underlie these reactions. At leading twist, the bound-state physics is encoded in terms of universal "distribution amplitudes", [23] the fundamental theoretical quantities which describe the valence quark substructure of hadrons as well as nuclei. Nonperturbative methods, such as AdS/QCD, Bethe–Salpeter methods, discretized light-cone quantization, and transverse lattice methods, are now providing nonperturbative predictions for the pion distribution amplitude. A basic feature of the gauge theory formalism is color transparency", [24] the absence of initial and final-state interactions of rapidly moving compact color-singlet states. Other applications of the exclusive factorization analysis include semileptonic meson decays and deeply virtual Compton scattering, as well as dynamical higher-twist effects in inclusive reactions. Exclusive processes place important constraints on the light-front wave functions of hadrons in terms of their quark and gluon degrees of freedom as well as the composition of nuclei in terms of their nucleon and mesonic degrees of freedom.

The form factors measured in the exclusive reaction encode the deviations from unity of the scattering amplitude due to the hadron's compositeness. Hadronic form factors fall monotonically with spacelike momentum transfer, since the amplitude for the hadron to remain intact continually decreases. One can also distinguish experimentally whether the spin orientation (helicity) of a hadron such as the spin-1/2 proton changes during the scattering or remains the same, as in the Pauli (spin-flip) and Dirac (spin-conserving) form factors.

The electromagnetic form factors of hadrons are given by matrix elements of the electromagnetic current such as where is the momentum four-vector of the exchanged virtual photon and is the eigenstate for hadron with four momentum . It is convenient to choose the light-front frame where with The elastic and inelastic form factors can then be expressed [25] as integrated overlaps of the light-front Fock eigenstate wave functions and of the initial and final-state hadrons, respectively. The of the struck quark is unchanged, and . The unstruck (spectator) quarks have . The result of the convolution gives the form factor exactly for all momentum transfer when one sums over all Fock states of the hadron. The frame choice is chosen since it eliminates off-diagonal contributions where the number of initial and final state particles differ; it was originally discovered by Drell and Yan [26] and by West. [27] The rigorous formulation in terms of light-front wave functions is given by Brodsky and Drell. [25]

Light-front wave functions are frame-independent, in contrast to ordinary instant form wave functions which need to be boosted from to , a difficult dynamical problem, as emphasized by Dirac. Worse, one must include contributions to the current matrix element where the external photon interacts with connected currents arising from vacuum fluctuations in order to obtain the correct frame-independent result. Such vacuum contributions do not arise in the light-front formalism, because all physical lines have positive ; the vacuum has only , and momentum is conserved.

At large momentum transfers, the elastic helicity-conserving form factors fall-off as the nominal power where is the minimum number of constituents. [28] [29] [30] For example, for the three-quark Fock state of the proton. This "quark counting rule" or "dimensional counting rule" holds for theories such as QCD in which the interactions in the Lagrangian are scale invariant (conformal). This result is a consequence of the fact that form factors at large momentum transfer are controlled by the short distance behavior of the hadron's wave function which in turn is controlled by the "twist" (dimension - spin) of the leading interpolating operator which can create the hadron at zero separation of the constituents. The rule can be generalized to give the power-law fall-off of inelastic form factors and form factors in which the hadron spin changes between the initial and final states. It can be derived nonperturbatively using gauge/string theory duality [31] and with logarithmic corrections from perturbative QCD. [22]

In the case of elastic scattering amplitudes, such as , the dominant physical mechanism at large momentum transfer is the exchange of the quark between the kaon and the proton . [32] This amplitude can be written as a convolution of the four initial and final state light-front valence Fock-state wave functions. It is convenient to express the amplitude in terms of Mandelstam variables, [33] where, for a reaction with momenta , the variables are . The resulting "quark interchange" amplitude has the leading form which agrees well with the angular dependence and power law fall-off of the amplitude with momentum transfer at fixed CM angle . The behavior of the amplitude, at fixed but large momentum transfer squared , shows that the intercept of Regge amplitudes at large negative . [34] The nominal power-law fall-off of the resulting hard exclusive scattering cross section for at fixed CM angle is consistent with the dimensional counting rule for hard elastic scattering , where is the minimum number of constituents.

More generally, the amplitude for a hard exclusive reaction in QCD can be factorized [22] at leading power as a product of the hard-scattering subprocess quark scattering amplitude , where the hadrons are each replaced with their constituent valence quarks or gluons, with their respective light-front momenta , convoluted with the "distribution amplitude" for each initial and final hadron. [23] The hard-scattering amplitude can then be computed systematically in perturbative QCD from the fundamental quark and gluon interactions of QCD. This factorization procedure can be carried out systematically since the effective QCD running coupling becomes small at high momentum transfer, because of the asymptotic freedom property of QCD.

The physics of each hadron enters through its distribution amplitudes , which specifies the partitioning of the light-front momenta of the valence constituents . It is given in light-cone gauge as , the integral of the valence light-front wave function over the internal transverse momentum squared ; the upper limit is the characteristic transverse momentum in the exclusive reaction. The logarithmic evolution of the distribution amplitude in is given rigorously in perturbative QCD by the ERBL evolution equation. [23] [35] The results are also consistent with general principles such as the renormalization group. The asymptotic behavior of the distribution such as where is the decay constant measured in pion decay can also be determined from first principles. The nonperturbative form of the hadron light-front wave function and distribution amplitude can be determined from AdS/QCD using light-front holography. [36] [37] [38] [39] [40] The deuteron distribution amplitude has five components corresponding to the five different color-singlet combinations of six color triplet quarks, only one of which is the standard nuclear physics product of two color singlets. It obeys a evolution equation [41] leading to equal weighting of the five components of the deuteron's light-front wave function components at The new degrees of freedom are called "hidden color". [41] [42] [43] Each hadron emitted from a hard exclusive reaction emerges with high momentum and small transverse size. A fundamental feature of gauge theory is that soft gluons decouple from the small color-dipole moment of the compact fast-moving color-singlet wave function configurations of the incident and final-state hadrons. The transversely compact color-singlet configurations can persist over a distance of order , the Ioffe coherence length. Thus, if we study hard quasi elastic processes in a nuclear target, the outgoing and ingoing hadrons will have minimal absorption - a novel phenomenon called "color transparency". [24] [44] This implies that quasi-elastic hadron-nucleon scattering at large momentum transfer can occur additively on all of the nucleons in a nucleus with minimal attenuation due to elastic or inelastic final state interactions in the nucleus, i.e. the nucleus becomes transparent. In contrast, in conventional Glauber scattering, one predicts nearly energy-independent initial and final-state attenuation. Color transparency has been verified in many hard-scattering exclusive experiments, particularly in the diffractive dijet experiment [45] at Fermilab. This experiment also provides a measurement of the pion's light-front valence wave function from the observed and transverse momentum dependence of the produced dijets. [46]

Light-front holography

One of the most interesting recent advances in hadron physics has been the application to QCD of a branch of string theory, Anti-de Sitter/Conformal Field Theory (AdS/CFT). [47] Although QCD is not a conformally invariant field theory, one can use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct an analytic first approximation to the theory. The resulting model, [36] [37] [38] [39] [40] [48] called AdS/QCD, gives accurate predictions for hadron spectroscopy and a description of the quark structure of mesons and baryons which has scale invariance and dimensional counting at short distances, together with color confinement at large distances.

"Light-Front Holography" refers to the remarkable fact that dynamics in AdS space in five dimensions is dual to a semiclassical approximation to Hamiltonian theory in physical space-time quantized at fixed light-front time. Remarkably, there is an exact correspondence between the fifth-dimension coordinate of AdS space and a specific impact variable which measures the physical separation of the quark constituents within the hadron at fixed light-cone time and is conjugate to the invariant mass squared . This connection allows one to compute the analytic form of the frame-independent simplified light-front wave functions for mesons and baryons that encode hadron properties and allow for the computation of exclusive scattering amplitudes.

In the case of mesons, the valence Fock-state wave functions of for zero quark mass satisfy a single-variable relativistic equation of motion in the invariant variable , which is conjugate to the invariant mass squared . The effective confining potential in this frame-independent "light-front Schrödinger equation" systematically incorporates the effects of higher quark and gluon Fock states. Remarkably, the potential has a unique form of a harmonic oscillator potential if one requires that the chiral QCD action remains conformally invariant. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics.

These recent developments concerning AdS/CFT duality provide new insights about light-front wave functions which may form first approximations to the full solutions that one seeks in LFQCD, and be considered as a step in building a physically motivated Fock-space basis set to diagonalize the LFQCD Hamiltonian, as in the basis light-front quantization (BLFQ) method.

Prediction of the cosmological constant

A major outstanding problem in theoretical physics is that most quantum field theories predict a huge value for the quantum vacuum. Such arguments are usually based on dimensional analysis and effective field theory. If the universe is described by an effective local quantum field theory down to the Planck scale, then we would expect a cosmological constant of the order of . As noted above, the measured cosmological constant is smaller than this by a factor of 10−120. This discrepancy has been called "the worst theoretical prediction in the history of physics!". [49]

A possible solution is offered by light front quantization, a rigorous alternative to the usual second quantization method. Vacuum fluctuations do not appear in the Light-Front vacuum state,. [50] [51] This absence means that there is no contribution from QED, Weak interactions and QCD to the cosmological constant which is thus predicted to be zero in a flat space-time. [52] The measured small non-zero value of the cosmological constant could originate for example from a slight curvature of the shape of the universe (which is not excluded within 0.4% (as of 2017) [53] [54] [55] ) since a curved-space could modify the Higgs field zero-mode, thereby possibly producing a non-zero contribution to the cosmological constant.

Intense lasers

High-intensity laser facilities offer prospects for directly measuring previously unobserved processes in QED, such as vacuum birefringence, photon-photon scattering and, still some way in the future, Schwinger pair production. Furthermore, `light-shining-through-walls' experiments can probe the low energy frontier of particle physics and search for beyond-standard-model particles. These possibilities have led to great interest in the properties of quantum field theories, in particular QED, in background fields describing intense light sources, [56] [57] and some of the fundamental predictions of the theory have been experimentally verified. [58]

Despite the basic theory behind `strong-field QED' having been developed over 40 years ago, there have remained until recent years several theoretical ambiguities that can in part be attributed to the use of the instant-form in a theory which, because of the laser background, naturally singles out light-like directions. Thus, light-front quantization is a natural approach to physics in intense laser fields. The use of the front-form in strong-field QED [59] has provided answers to several long standing questions, such as the nature of the effective mass in a laser pulse, the pole structure of the background-dressed propagator, and the origins of classical radiation reaction within QED.

Combined with nonperturbative approaches such as `time dependent basis light-front quantization', [60] [61] which is specifically targeted at time-dependent problems in field theory, the front-form promises to provide a better understanding of QED in external fields. Such investigations will also provide groundwork for understanding QCD physics in strong magnetic fields at, for example, RHIC.

Nonperturbative quantum field theory

Quantum Chromodynamics (QCD), the theory of strong interactions, is a part of the Standard Model of elementary particles that also includes, besides QCD, the theory of electro-weak (EW) interactions. In view of the difference in strength of these interactions, one may treat the EW interactions as a perturbation in systems consisting of hadrons, the composite particles that respond to the strong interactions. Perturbation theory has its place in QCD also, but only at large values of the transferred energy or momentum where it exhibits the property of asymptotic freedom. The field of perturbative QCD is well developed and many phenomena have been described using it, such as factorization, parton distributions, single-spin asymmetries, and jets. However, at low values of the energy and momentum transfer, the strong interaction must be treated in a nonperturbative manner, since the interaction strength becomes large and the confinement of quarks and gluons, as the partonic components of the hadrons, cannot be ignored. There is a wealth of data in this strong interaction regime that is waiting for explanation in terms of calculations proceeding directly from the underlying theory. As one prominent application of an ab initio approach to QCD, many extensive experimental programs either measure directly, or depend upon the knowledge of, the probability distributions of the quark and gluon components of the hadrons.

Three approaches have produced considerable success in the strong-coupling area up to the present. First, hadronic models have been formulated and applied successfully. [62] [63] [64] [65] [66] [67] [68] [69] [70] This success comes sometimes at the price of introducing parameters that need to be identified quantitatively. For example, the Relativistic String Hamiltonian [71] depends on the current quark masses, the string tension, and a parameter corresponding to . The second method, lattice QCD, [72] [73] [74] is an ab initio approach directly linked to the Lagrangian of QCD. Based on a Euclidean formulation, lattice QCD provides an estimate of the QCD path integral and opens access to low-energy hadronic properties such as masses. Although lattice QCD can estimate some observables directly, it does not provide the wave functions that are needed for the description of the structure and dynamics of hadrons. Third is the Dyson—Schwinger approach. [75] [76] [77] [78] It is also formulated in Euclidean space-time and employs models for vertex functions.

The light-front Hamiltonian approach is a fourth approach, which, in contrast to the lattice and Dyson–Schwinger approaches, is developed in Minkowski space and deals directly with wave functions - the main objects of quantum theory. Unlike the modeling approach, it is rooted in the fundamental Lagrangian of QCD.

Any field-theoretical Hamiltonian does not conserve the number of particles. Therefore, in the basis, corresponding to fixed number of particles, it is a non-diagonal matrix. Its eigenvector—the state vector of a physical system—is an infinite superposition (Fock decomposition) of the states with different numbers of particles:

is the -body wave function (Fock component) and is an integration measure. In light-front quantization, the Hamiltonian and the state vector here are defined on the light-front plane.

In many cases, though not always, one can expect that a finite number of degrees of freedom dominates, that is, the decomposition in the Fock components converges enough quickly. In these cases the decomposition can be truncated, so that the infinite sum can be approximately replaced by a finite one. Then, substituting the truncated state vector in the eigenvector equation

one obtains a finite system of integral equations for the Fock wave functions which can be solved numerically. Smallness of the coupling constant is not required. Therefore, the truncated solution is nonperturbative. This is the basis of a nonperturbative approach to the field theory which was developed and, for the present, applied to QED [79] [80] [81] [82] [83] and to the Yukawa model. [84] [85]

The main difficulty in this way is to ensure cancellation of infinities after renormalization. In the perturbative approach, for a renormalizable field theory, in any fixed order of coupling constant, this cancellation is obtained as a by-product of the renormalization procedure. However, to ensure the cancellation, it is important to take into account the full set of graphs at a given order. Omitting some of these graphs destroys the cancellation and the infinities survive after renormalization. This is what happens after truncation of the Fock space; though the truncated solution can be decomposed into an infinite series in terms of the coupling constant, at any given order the series does not contain the full set of perturbative graphs. Therefore, the standardrenormalization scheme does not eliminate infinities.

In the approach of Brodsky et al. [79] the infinities remain uncanceled, though it is expected that as soon as the number of sectors kept after truncation increases, the domain of stability of the results relative to the cutoff also increases. The value on this plateau of stability is just an approximation to the exact solution which is taken as the physical value.

The sector-dependent approach [85] [86] is constructed so as to restore cancellation of infinities for any given truncation. The values of the counterterms are constructed from sector to sector according to unambiguously formulated rules. The numerical results for the anomalous magnetic moment of fermion in the truncation keeping three Fock sectors are stable relative to increase of the cutoff. [87] However, the interpretation of the wave functions, due to negative norm of the Pauli-Villars states introduced for regularization, becomes problematic. [88] When the number of sectors increases, the results in both schemes should tend to each other and approach to the exact nonperturbative solution.

The light-front coupled-cluster approach [89] (see Light-front computational methods#Light-front coupled-cluster method), avoids making a Fock-space truncation. Applications of this approach are just beginning.

Structure of hadrons

Experiments that need a conceptually and mathematically precise theoretical description of hadrons at the amplitude level include investigations of: the structure of nucleons and mesons, heavy quark systems and exotics, hard processes involving quark and gluon distributions in hadrons, heavy ion collisions, and many more. For example, LFQCD will offer the opportunity for an ab initio understanding of the microscopic origins of the spin content of the proton and how the intrinsic and spatial angular momenta are distributed among the partonic components in terms of the wave functions. This is an outstanding unsolved problem as experiments to date have not yet found the largest components of the proton spin. The components previously thought to be the leading carriers, the quarks, have been found to carry a small amount of the total spin. Generalized parton distributions (GPDs) were introduced to quantify each component of the spin content and have been used to analyze the experimental measurements of deeply virtual Compton scattering (DVCS). As another example, LFQCD will predict the masses, quantum numbers and widths of yet-to-be observed exotics such as glueballs and hybrids.

QCD at high temperature and density

There are major programs at accelerator facilities such as GSI-SIS, CERN-LHC, and BNL-RHIC to investigate the properties of a new state of matter, the quark–gluon plasma, and other features of the QCD phase diagram. In the early universe, temperatures were high, while net baryon densities were low. In contrast, in compact stellar objects, temperatures are low, and the baryon density is high. QCD describes both extremes. However, reliable perturbative calculations can only be performed at asymptotically large temperatures and densities, where the running coupling constant of QCD is small due to asymptotic freedom, and lattice QCD provides information only at very low chemical potential (baryon density). Thus, many frontier questions remain to be answered. What is the nature of the phase transitions? How does the matter behave in the vicinity of the phase boundaries? What are the observable signatures of the transition in transient heavy-ion collisions? LFQCD opens a new avenue for addressing these issues.

In recent years a general formalism to directly compute the partition function in light-front quantization has been developed and numerical methods are under development for evaluating this partition function in LFQCD. [90] [91] [92] [93] [94] [95] [96] Light-front quantization leads to new definitions of the partition function and temperature which can provide a frame-independent description of thermal and statistical systems. [91] [92] The goal is to establish a tool comparable in power to lattice QCD but extending the partition function to finite chemical potentials where experimental data are available.

See also

Related Research Articles

<span class="mw-page-title-main">Quantum chromodynamics</span> Theory of the strong nuclear interactions

In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

The up quark or u quark is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons and protons of atomic nuclei. It is part of the first generation of matter, has an electric charge of +2/3 e and a bare mass of 2.2+0.5
−0.4
 MeV/c2
. Like all quarks, the up quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the up quark is the up antiquark, which differs from it only in that some of its properties, such as charge have equal magnitude but opposite sign.

The down quark is a type of elementary particle, and a major constituent of matter. The down quark is the second-lightest of all quarks, and combines with other quarks to form composite particles called hadrons. Down quarks are most commonly found in atomic nuclei, where it combines with up quarks to form protons and neutrons. The proton is made of one down quark with two up quarks, and the neutron is made up of two down quarks with one up quark. Because they are found in every single known atom, down quarks are present in all everyday matter that we interact with.

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

<span class="mw-page-title-main">Tetraquark</span> Exotic meson composed of four valence quarks

In particle physics, a tetraquark is an exotic meson composed of four valence quarks. A tetraquark state has long been suspected to be allowed by quantum chromodynamics, the modern theory of strong interactions. A tetraquark state is an example of an exotic hadron which lies outside the conventional quark model classification. A number of different types of tetraquark have been observed.

<span class="mw-page-title-main">Effective field theory</span> Type of approximation to an underlying physical theory

In physics, an effective field theory is a type of approximation, or effective theory, for an underlying physical theory, such as a quantum field theory or a statistical mechanics model. An effective field theory includes the appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale or energy scale, while ignoring substructure and degrees of freedom at shorter distances. Intuitively, one averages over the behavior of the underlying theory at shorter length scales to derive what is hoped to be a simplified model at longer length scales. Effective field theories typically work best when there is a large separation between length scale of interest and the length scale of the underlying dynamics. Effective field theories have found use in particle physics, statistical mechanics, condensed matter physics, general relativity, and hydrodynamics. They simplify calculations, and allow treatment of dissipation and radiation effects.

<span class="mw-page-title-main">Lattice QCD</span> Quantum chromodynamics on a lattice

Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum QCD is recovered.

<span class="mw-page-title-main">Quarkonium</span> Meson whose constituents are a quark and its own antiquark of the same flavor

In particle physics, quarkonium is a flavorless meson whose constituents are a heavy quark and its own antiquark, making it both a neutral particle and its own antiparticle. The name "quarkonium" is analogous to positronium, the bound state of electron and anti-electron. The particles are short-lived due to matter-antimatter annihilation.

A conformal anomaly, scale anomaly, trace anomaly or Weyl anomaly is an anomaly, i.e. a quantum phenomenon that breaks the conformal symmetry of the classical theory.

<span class="mw-page-title-main">Two-photon physics</span> Branch of particle physics concerning interactions between two photons

Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the intensity of the beams is high enough, the beams may affect each other through a variety of non-linear effects. In pure vacuum, some weak scattering of light by light exists as well. Also, above some threshold of this center-of-mass energy of the system of the two photons, matter can be created.

<span class="mw-page-title-main">Exotic hadron</span> Subatomic particles consisting of quarks and gluons

Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just two or three quarks. Hadrons with explicit valence gluon content would also be considered exotic. In theory, there is no limit on the number of quarks in a hadron, as long as the hadron's color charge is white, or color-neutral.

<span class="mw-page-title-main">Drell–Yan process</span> Process in high-energy hadron–hadron scattering

The Drell–Yan process occurs in high energy hadron–hadron scattering. It takes place when a quark of one hadron and an antiquark of another hadron annihilate, creating a virtual photon or Z boson which then decays into a pair of oppositely-charged leptons. Importantly, the energy of the colliding quark-antiquark pair can be almost entirely transformed into the mass of new particles. This process was first suggested by Sidney Drell and Tung-Mow Yan in 1970 to describe the production of lepton–antilepton pairs in high-energy hadron collisions. Experimentally, this process was first observed by J. H. Christenson et al. in proton–uranium collisions at the Alternating Gradient Synchrotron.

In particle physics, the parton model is a model of hadrons, such as protons and neutrons, proposed by Richard Feynman. It is useful for interpreting the cascades of radiation produced from quantum chromodynamics (QCD) processes and interactions in high-energy particle collisions.

<span class="mw-page-title-main">William A. Bardeen</span> American theoretical physicist

William Allan Bardeen is an American theoretical physicist who worked at the Fermi National Accelerator Laboratory. He is renowned for his foundational work on the chiral anomaly, the Yang-Mills and gravitational anomalies, the development of quantum chromodynamics and the scheme frequently used in perturbative analysis of experimentally observable processes such as deep inelastic scattering, high energy collisions and flavor changing processes.

In particle physics, hexaquarks, alternatively known as sexaquarks, are a large family of hypothetical particles, each particle consisting of six quarks or antiquarks of any flavours. Six constituent quarks in any of several combinations could yield a colour charge of zero; for example a hexaquark might contain either six quarks, resembling two baryons bound together, or three quarks and three antiquarks. Once formed, dibaryons are predicted to be fairly stable by the standards of particle physics.

<span class="mw-page-title-main">Light front quantization</span> Technique in computational quantum field theory

The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others.

Thomas Carlos Mehen is an American physicist. His research has consisted of primarily Quantum chromodynamics (QCD) and the application of effective field theory to problems in hadronic physics. He has also worked on effective field theory for non-relativistic particles whose short range interactions are characterized by a large scattering length, as well as novel field theories which arise from unusual limits of string theory.

<span class="mw-page-title-main">Light front holography</span> Technique used to determine mass of hadrons

In strong interaction physics, light front holography or light front holographic QCD is an approximate version of the theory of quantum chromodynamics (QCD) which results from mapping the gauge theory of QCD to a higher-dimensional anti-de Sitter space (AdS) inspired by the AdS/CFT correspondence proposed for string theory. This procedure makes it possible to find analytic solutions in situations where strong coupling occurs, improving predictions of the masses of hadrons and their internal structure revealed by high-energy accelerator experiments. The most widely used approach to finding approximate solutions to the QCD equations, lattice QCD, has had many successful applications; however, it is a numerical approach formulated in Euclidean space rather than physical Minkowski space-time.

<span class="mw-page-title-main">Light-front computational methods</span> Technique in computational quantum field theory

The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others.

In particle physics, the Cornell potential is an effective method to account for the confinement of quarks in quantum chromodynamics (QCD). It was developed by Estia J. Eichten, Kurt Gottfried, Toichiro Kinoshita, John Kogut, Kenneth Lane and Tung-Mow Yan at Cornell University in the 1970s to explain the masses of quarkonium states and account for the relation between the mass and angular momentum of the hadron. The potential has the form:

References

  1. Bakker, B.L.G.; Bassetto, A.; Brodsky, S.J.; Broniowski, W.; Dalley, S.; Frederico, T.; Głazek, S.D.; Hiller, J.R.; Ji, C.-R.; Karmanov, V.; Kulshreshtha, D.; Mathiot, J.-F.; Melnitchouk, W.; Miller, G.A.; Papavassiliou, J.; Polyzou, W.N.; Stefanis, N.G.; Vary, J.P.; Ilderton, A.; Heinzl, T. (2014). "Light-front quantum chromodynamics". Nuclear Physics B - Proceedings Supplements. 251–252: 165–174. arXiv: 1309.6333 . Bibcode:2014NuPhS.251..165B. doi:10.1016/j.nuclphysbps.2014.05.004. ISSN   0920-5632. S2CID   117029089.
  2. Burkardt, Matthias (2002). "Light front quantization". Advances in Nuclear Physics. Vol. 23. pp. 1–74. arXiv: hep-ph/9505259 . CiteSeerX   10.1.1.346.1655 . doi:10.1007/0-306-47067-5_1. ISBN   978-0-306-45220-8. S2CID   19024989.
  3. S.J. Brodsky; H.-C. Pauli; S.S. Pinsky (1998). "Quantum chromodynamics and other field theories on the light cone". Physics Reports . 301 (4–6): 299–486. arXiv: hep-ph/9705477 . Bibcode:1998PhR...301..299B. CiteSeerX   10.1.1.343.1943 . doi:10.1016/S0370-1573(97)00089-6. S2CID   118978680.
  4. P. A. M. Dirac (1949). "Forms of Relativistic Dynamics". Reviews of Modern Physics (Submitted manuscript). 21 (3): 392–399. Bibcode:1949RvMP...21..392D. doi: 10.1103/RevModPhys.21.392 .
  5. L. L. Frankfurt; M. I. Strikman (1981). "High-Energy Phenomena, Short Range Nuclear Structure and QCD". Physics Reports . 76 (4): 215–347. Bibcode:1981PhR....76..215F. doi:10.1016/0370-1573(81)90129-0.
  6. L. L. Frankfurt; M. I. Strikman (1988). "Hard Nuclear Processes and Microscopic Nuclear Structure". Physics Reports . 160 (5–6): 235–427. Bibcode:1988PhR...160..235F. doi:10.1016/0370-1573(88)90179-2.
  7. J. R. Cooke; G. A. Miller (2002). "Deuteron binding energies and form-factors from light front field theory". Physical Review C . 66 (3): 034002. arXiv: nucl-th/0112037 . Bibcode:2002PhRvC..66c4002C. doi:10.1103/PhysRevC.66.034002. S2CID   118194168.
  8. J. R. Cooke; G. A. Miller (2002). "Pion-only, chiral light front model of the deuteron". Physical Review C . 65 (6): 067001. arXiv: nucl-th/0112076 . Bibcode:2002PhRvC..65f7001C. doi:10.1103/PhysRevC.65.067001. S2CID   119382069.
  9. J. R. Cooke; G. A. Miller; D. R. Phillips (2000). "Restoration of rotational invariance of bound states on the light front". Physical Review C (Submitted manuscript). 61 (6): 064005. arXiv: nucl-th/9910013 . Bibcode:2000PhRvC..61f4005C. doi:10.1103/PhysRevC.61.064005. S2CID   653219.
  10. P. G. Blunden; Burkardt, Matthis; G. A. Miller (2000). "Light front nuclear physics: Toy models, static sources and tilted light front coordinates". Physical Review C . 61 (2): 025206. arXiv: nucl-th/9908067 . Bibcode:2000PhRvC..61b5206B. CiteSeerX   10.1.1.262.6299 . doi:10.1103/PhysRevC.61.025206. S2CID   12452978.
  11. P. G. Blunden; Burkardt, Matthias; G. A. Miller (1999). "Light front nuclear physics: Mean field theory for finite nuclei". Physical Review C . 60 (5): 055211. arXiv: nucl-th/9906012 . Bibcode:1999PhRvC..60e5211B. CiteSeerX   10.1.1.264.4749 . doi:10.1103/PhysRevC.60.055211. S2CID   119357119.
  12. P. G. Blunden; Burkardt, Matthias; G. A. Miller (1999). "Rotational invariance in nuclear light front mean field theory". Physical Review C . 59 (6): 2998–3001. arXiv: nucl-th/9901063 . Bibcode:1999PhRvC..59.2998B. doi:10.1103/PhysRevC.59.R2998.
  13. G. A. Miller (1997). "A Light front treatment of the nucleus implications for deep inelastic scattering". Physical Review C . 56 (1): 8–11. arXiv: nucl-th/9702036 . Bibcode:1997PhRvC..56....8M. doi:10.1103/PhysRevC.56.R8. S2CID   965437.
  14. G. A. Miller (1997). "Light front treatment of nuclei: Formalism and simple applications". Physical Review C . 56 (5): 2789–2805. arXiv: nucl-th/9706028 . Bibcode:1997PhRvC..56.2789M. doi:10.1103/PhysRevC.56.2789. S2CID   26899876.
  15. G. A. Miller; R. Machleidt (1999). "Light front theory of nuclear matter". Physics Letters B . 455 (1–4): 19–24. arXiv: nucl-th/9811050 . Bibcode:1999PhLB..455...19M. doi:10.1016/S0370-2693(99)90042-4. S2CID   119447226.
  16. G. A. Miller; R. Machleidt (1999). "Infinite nuclear matter on the light front: Nucleon-nucleon correlations". Physical Review C . 60 (3): 035202. arXiv: nucl-th/9903080 . Bibcode:1999PhRvC..60c5202M. doi:10.1103/PhysRevC.60.035202. S2CID   74205.
  17. G. A. Miller; J. R. Smith (2002). "Return of the EMC effect". Physical Review C . 65 (1): 015211. arXiv: nucl-th/0107026 . Bibcode:2001PhRvC..65a5211M. doi:10.1103/PhysRevC.65.015211.
  18. G. A. Miller; J. R. Smith (2002). "Erratum: Return of the EMC effect". Physical Review C . 66 (4): 049903. arXiv: nucl-th/0107026 . Bibcode:2002PhRvC..66d9903S. doi:10.1103/PhysRevC.66.049903.
  19. J. R. Smith; G. A. Miller (2002). "Return of the EMC effect: Finite nuclei". Physical Review C . 65 (5): 055206. arXiv: nucl-th/0202016 . Bibcode:2002PhRvC..65e5206S. doi:10.1103/PhysRevC.65.055206. S2CID   119443667.
  20. G. A. Miller (2000). "Light front quantization: A Technique for relativistic and realistic nuclear physics". Progress in Particle and Nuclear Physics . 45 (1): 83–155. arXiv: nucl-th/0002059 . Bibcode:2000PrPNP..45...83M. CiteSeerX   10.1.1.265.5583 . doi:10.1016/S0146-6410(00)00103-4. S2CID   15496506.
  21. D. Boer (2011). "The EIC Science case: a report on the joint BNL/INT/JLab program Gluons and the quark sea at high energies: Distributions, polarization, tomography". arXiv: 1108.1713 [nucl-th].
  22. 1 2 3 G. P. Lepage; S. J. Brodsky (1980). "Exclusive Processes in Perturbative Quantum Chromodynamics" (PDF). Physical Review D . 22 (9): 2157–2198. Bibcode:1980PhRvD..22.2157L. doi:10.1103/PhysRevD.22.2157. OSTI   1445541. S2CID   123364276.
  23. 1 2 3 G. P. Lepage; S. J. Brodsky (1979). "Exclusive Processes in Quantum Chromodynamics: Evolution Equations for Hadronic Wave Functions and the Form-Factors of Mesons" (PDF). Physics Letters B . 87 (4): 359–365. Bibcode:1979PhLB...87..359P. doi:10.1016/0370-2693(79)90554-9. OSTI   1447331.
  24. 1 2 S. J. Brodsky; A. H. Mueller (1988). "Using Nuclei to Probe Hadronization in QCD" (PDF). Physics Letters B . 206 (4): 685–690. Bibcode:1988PhLB..206..685B. doi:10.1016/0370-2693(88)90719-8. OSTI   1448604.
  25. 1 2 S. J. Brodsky; S. D. Drell (1980). "The Anomalous Magnetic Moment and Limits on Fermion Substructure" (PDF). Physical Review D . 22 (9): 2236–2243. Bibcode:1980PhRvD..22.2236B. doi:10.1103/PhysRevD.22.2236. OSTI   1445649. S2CID   7921690.
  26. S. D. Drell; T. -M. Yan (1970). "Connection of Elastic Electromagnetic Nucleon Form-Factors at Large and Deep Inelastic Structure Functions Near Threshold" (PDF). Physical Review Letters . 24 (4): 181–186. Bibcode:1970PhRvL..24..181D. doi:10.1103/PhysRevLett.24.181. OSTI   1444780. S2CID   17438828.
  27. G. B. West (1970). "Phenomenological model for the electromagnetic structure of the proton". Physical Review Letters . 24 (21): 1206–1209. Bibcode:1970PhRvL..24.1206W. doi:10.1103/PhysRevLett.24.1206.
  28. S. J. Brodsky; G. R. Farrar (1973). "Scaling Laws at Large Transverse Momentum". Physical Review Letters . 31 (18): 1153–1156. Bibcode:1973PhRvL..31.1153B. CiteSeerX   10.1.1.381.5019 . doi:10.1103/PhysRevLett.31.1153.
  29. V. A. Matveev; R. M. Muradian; A. N. Tavkhelidze (1973). "Automodellism in the large-angle elastic scattering and structure of hadrons". Lettere al Nuovo Cimento . 7 (15): 719–723. doi:10.1007/BF02728133. S2CID   122760581.
  30. S. J. Brodsky; G. R. Farrar (1975). "Scaling Laws for Large Momentum Transfer Processes" (PDF). Physical Review D . 11 (5): 1309–1330. Bibcode:1975PhRvD..11.1309B. doi:10.1103/PhysRevD.11.1309.
  31. J. Polchinski; M. J. Strassler (2002). "Hard scattering and gauge/string duality". Physical Review Letters . 88 (3): 031601. arXiv: hep-th/0109174 . Bibcode:2002PhRvL..88c1601P. doi:10.1103/PhysRevLett.88.031601. PMID   11801052. S2CID   2891297.
  32. J. F. Gunion; S. J. Brodsky; R. Blankenbecler (1973). "Large Angle Scattering and the Interchange Force". Physical Review D . 8 (1): 287–312. Bibcode:1973PhRvD...8..287G. CiteSeerX   10.1.1.412.5870 . doi:10.1103/PhysRevD.8.287.
  33. S. Mandelstam (1958). "Determination of the Pion-Nucleon Scattering Amplitude from Dispersion Relations and Unitarity". Physical Review . 112 (4): 1344–1360. Bibcode:1958PhRv..112.1344M. doi:10.1103/PhysRev.112.1344. S2CID   120795969.
  34. R. Blankenbecler; S. J. Brodsky; J. F. Gunion; R. Savit (1973). "The Connection Between Regge Behavior And Fixed Angle Scattering". Physical Review D . 8 (11): 4117–4133. Bibcode:1973PhRvD...8.4117B. doi:10.1103/PhysRevD.8.4117. OSTI   1442904. S2CID   16995095.
  35. A. V. Efremov; A. V. Radyushkin (1980). "Factorization and Asymptotical Behavior of Pion Form-Factor in QCD". Physics Letters B . 94 (2): 245–250. Bibcode:1980PhLB...94..245E. doi:10.1016/0370-2693(80)90869-2.
  36. 1 2 G. F. de Teramond; S. J. Brodsky (2005). "Hadronic spectrum of a holographic dual of QCD". Physical Review Letters . 94 (20): 201601. arXiv: hep-th/0501022 . Bibcode:2005PhRvL..94t1601D. doi:10.1103/PhysRevLett.94.201601. PMID   16090235. S2CID   11006078.
  37. 1 2 G. F. de Teramond; S. J. Brodsky (2009). "Light-Front Holography: A First Approximation to QCD". Physical Review Letters . 102 (8): 081601. arXiv: 0809.4899 . Bibcode:2009PhRvL.102h1601D. doi:10.1103/PhysRevLett.102.081601. PMID   19257731. S2CID   33855116.
  38. 1 2 S. J. Brodsky; F. -G. Cao; G. F. de Teramond (2012). "AdS/QCD and Applications of Light-Front Holography". Communications in Theoretical Physics . 57 (4): 641–664. arXiv: 1108.5718 . Bibcode:2012CoTPh..57..641S. doi:10.1088/0253-6102/57/4/21. S2CID   73629251.
  39. 1 2 T. Gutsche; V. E. Lyubovitskij; I. Schmidt; A. Vega (2013). "Nucleon resonances in AdS/QCD". Physical Review D . 87 (1): 016017. arXiv: 1212.6252 . Bibcode:2013PhRvD..87a6017G. doi:10.1103/PhysRevD.87.016017. S2CID   118685470.
  40. 1 2 T. Gutsche; V. E. Lyubovitskij; I. Schmidt; A. Vega (2013). "Chiral Symmetry Breaking and Meson Wave Functions in Soft-Wall AdS/QCD". Physical Review D . 87 (5): 056001. arXiv: 1212.5196 . Bibcode:2013PhRvD..87e6001G. doi:10.1103/PhysRevD.87.056001. S2CID   118377538.
  41. 1 2 S. J. Brodsky; C.-R. Ji; G. P. Lepage (1983). "Quantum Chromodynamic Predictions for the Deuteron Form Factor". Physical Review Letters . 51 (2): 83–86. Bibcode:1983PhRvL..51...83B. CiteSeerX   10.1.1.380.6934 . doi:10.1103/PhysRevLett.51.83.
  42. Harvey, M. (1981). "Effective nuclear forces in the quark model with Delta and hidden color channel coupling". Nuclear Physics A . 352 (3): 326–342. Bibcode:1981NuPhA.352..326H. doi:10.1016/0375-9474(81)90413-9.
  43. Miller, G. A. (2014). "Pionic and Hidden-Color, Six-Quark Contributions to the Deuteron b1 Structure Function". Physical Review C . 89 (4): 045203. arXiv: 1311.4561 . Bibcode:2014PhRvC..89d5203M. doi:10.1103/PhysRevC.89.045203. S2CID   118655221.
  44. M. Strikman (2008). "Color transparency: 33 years and still running". Exclusive Reactions at High Momentum Transfer. Proceedings of the International Workshop. Held 21–24 May 2007 in Jefferson Lab. pp. 95–103. arXiv: 0711.1625 . Bibcode:2008erhm.conf...95S. CiteSeerX   10.1.1.314.8993 . doi:10.1142/9789812796950_0008. ISBN   9789812796943. S2CID   15888837.
  45. Ashery, D. (2006). "High momentum diffractive processes and hadronic structure". Progress in Particle and Nuclear Physics . 56 (2): 279–339. Bibcode:2006PrPNP..56..279A. doi:10.1016/j.ppnp.2005.08.003.
  46. L. L. Frankfurt; G. A. Miller; M. Strikman (1994). "The Geometrical color optics of coherent high-energy processes". Annual Review of Nuclear and Particle Science . 44 (44): 501–560. arXiv: hep-ph/9407274 . Bibcode:1994ARNPS..44..501F. doi: 10.1146/annurev.ns.44.120194.002441 .
  47. N. Beisert; C. Ahn; L. F. Alday; Z. Bajnok; J. M. Drummond; L. Freyhult; N. Gromov; R. A. Janik; V. Kazakov; T. Klose (2012). "Review of AdS/CFT Integrability: An Overview". Letters in Mathematical Physics (Submitted manuscript). 99 (1–3): 3–32. arXiv: 1012.3982 . Bibcode:2012LMaPh..99....3B. doi:10.1007/s11005-011-0529-2. S2CID   20470441.
  48. S.S. Chabysheva; J.R. Hiller (2013). "Dynamical model for longitudinal wave functions in light-front holographic QCD". Annals of Physics . 337: 143–152. arXiv: 1207.7128 . Bibcode:2013AnPhy.337..143C. doi:10.1016/j.aop.2013.06.016. S2CID   119239061.
  49. MP Hobson; GP Efstathiou; AN Lasenby (2006). General Relativity: An introduction for physicists (Reprinted with corrections 2007 ed.). Cambridge University Press. p. 187. ISBN   978-0-521-82951-9.
  50. Leutwyler, H.; Klauder, J. R.; Streit, L. (1970). "Quantum field theory on lightlike slabs". Il Nuovo Cimento A. 66 (3). Springer Science and Business Media LLC: 536–554. Bibcode:1970NCimA..66..536L. doi:10.1007/bf02826338. ISSN   0369-3546. S2CID   124546775.
  51. Casher, Aharon; Susskind, Leonard (1974-01-15). "Chiral magnetism (or magnetohadrochironics)". Physical Review D. 9 (2). American Physical Society (APS): 436–460. Bibcode:1974PhRvD...9..436C. doi:10.1103/physrevd.9.436. ISSN   0556-2821.
  52. Brodsky, Stanley J.; Shrock, Robert (2010-12-15). "Condensates in quantum chromodynamics and the cosmological constant". Proceedings of the National Academy of Sciences. 108 (1): 45–50. arXiv: 0905.1151 . doi: 10.1073/pnas.1010113107 . ISSN   0027-8424.
  53. "Will the Universe expand forever?". NASA. 24 January 2014. Retrieved 16 March 2015.
  54. "Our universe is Flat". FermiLab/SLAC. 7 April 2015.
  55. Marcus Y. Yoo (2011). "Unexpected connections". Engineering & Science. LXXIV1: 30.
  56. T. Heinzl; A. Ilderton (2009). "Exploring high-intensity QED at ELI". European Physical Journal D . 55 (2): 359–364. arXiv: 0811.1960 . Bibcode:2009EPJD...55..359H. doi:10.1140/epjd/e2009-00113-x. S2CID   17159828.
  57. A. Di Piazza; C. M\"uller; K. Z. Hatsagortsyan; C. H. Keitel (2012). "Extremely high-intensity laser interactions with fundamental quantum systems". Reviews of Modern Physics . 84 (3): 1177–1228. arXiv: 1111.3886 . Bibcode:2012RvMP...84.1177D. doi:10.1103/RevModPhys.84.1177. S2CID   118536606.
  58. C. Bamber; S. J. Boege; T. Koffas; T. Kotseroglou; A. C. Melissinos; D. D. Meyerhofer; D. A. Reis; W. Ragg (1999). "Studies of nonlinear QED in collisions of 46.6-GeV electrons with intense laser pulses". Physical Review D . 60 (9): 092004. Bibcode:1999PhRvD..60i2004B. doi:10.1103/PhysRevD.60.092004. S2CID   16694750.
  59. R. A. Neville; F. Rohrlich (1971). "Quantum electrodynamics on null planes and applications to lasers". Physical Review D . 3 (8): 1692–1707. Bibcode:1971PhRvD...3.1692N. doi:10.1103/PhysRevD.3.1692.
  60. X. Zhao; A. Ilderton; P. Maris; J. P. Vary (2013). "Non-perturbative quantum time evolution on the light-front". Physics Letters B . 726 (4–5): 856–860. arXiv: 1309.5338 . Bibcode:2013PhLB..726..856Z. CiteSeerX   10.1.1.754.5978 . doi:10.1016/j.physletb.2013.09.030. S2CID   118611529.
  61. X. Zhao; A. Ilderton; P. Maris; J. P. Vary (2013). "Scattering in Time-Dependent Basis Light-Front Quantization". Physical Review D (Submitted manuscript). 88 (6): 065014. arXiv: 1303.3273 . Bibcode:2013PhRvD..88f5014Z. doi:10.1103/PhysRevD.88.065014. S2CID   119292875.
  62. R. P. Feynman; M. Kislinger; F. Ravndal (1971). "Current matrix elements from a relativistic quark model" (PDF). Physical Review D . 3 (11): 2706–2732. Bibcode:1971PhRvD...3.2706F. doi:10.1103/PhysRevD.3.2706.
  63. H. J. Lipkin (1973). "Quarks for pedestrians". Physics Reports . 8 (3): 173–268. Bibcode:1973PhR.....8..173L. doi:10.1016/0370-1573(73)90002-1.
  64. A. Chodos; R. L. Jaffe; K. Johnson; C. B. Thorn; V. F. Weisskopf (1974). "New extended model of hadrons". Physical Review D . 9 (12): 3471–3495. Bibcode:1974PhRvD...9.3471C. doi:10.1103/PhysRevD.9.3471. S2CID   16975472.
  65. Casher, A.; Neuberger, H.; Nussinov, S. (1979). "Chromoelectric-flux-tube model of particle production". Physical Review D. 20 (1): 179–188. Bibcode:1979PhRvD..20..179C. doi:10.1103/PhysRevD.20.179. ISSN   0556-2821.
  66. S. Theberge; A. W. Thomas; G. A. Miller (1980). "The Cloudy Bag Model. 1. The (3,3) Resonance". Physical Review D . 22 (11): 2838–2852. Bibcode:1980PhRvD..22.2838T. doi:10.1103/PhysRevD.22.2838.
  67. S. Theberge; A. W. Thomas; G. A. Miller (1981). "Erratum: The Cloudy Bag Model. 1. The (3,3) Resonance". Physical Review D . 23 (9): 2106. Bibcode:1981PhRvD..23.2106R. doi: 10.1103/PhysRevD.23.2106 .
  68. N. Isgur; J. E. Paton (1985). "A Flux Tube Model for Hadrons in QCD". Physical Review D . 31 (11): 2910–2929. Bibcode:1985PhRvD..31.2910I. doi:10.1103/PhysRevD.31.2910. PMID   9955610.
  69. Godfrey, S.; Isgur, N. (1985). "Mesons in a Relativized Quark Model with Chromodynamics". Physical Review D . 32 (1): 189–231. Bibcode:1985PhRvD..32..189G. doi:10.1103/PhysRevD.32.189. PMID   9955999.
  70. Choi, H. M.; Ji, C. R. (1999). "Mixing angles and electromagnetic properties of ground state pseudoscalar and vector meson nonets in the light cone quark model". Physical Review D . 59 (7): 074015. arXiv: hep-ph/9711450 . Bibcode:1999PhRvD..59g4015C. doi:10.1103/PhysRevD.59.074015. S2CID   2457176.
  71. Simonov, Y. A. (1997). "Theory of light quarks in the confining vacuum". Physics of Atomic Nuclei . 60 (12): 2069–2093. arXiv: hep-ph/9704301 . Bibcode:1997PAN....60.2069S.
  72. Wilson, K. G. (1974). "Confinement of Quarks". Physical Review D . 10 (8): 2445–2459. Bibcode:1974PhRvD..10.2445W. doi:10.1103/PhysRevD.10.2445.
  73. Gattringer, C.; Lang, C.B. (2010). Quantum Chromodynamics on the Lattice. Berlin: Springer.
  74. Rothe, H. (2012). Lattice Gauge Theories: An Introduction 4e. Singapore: World Scientific.
  75. Roberts, C.D.; Williams, A.G. (1994). "Dyson-Schwinger equations and their application to hadronic physics". Progress in Particle and Nuclear Physics . 33: 477–575. arXiv: hep-ph/9403224 . Bibcode:1994PrPNP..33..477R. doi:10.1016/0146-6410(94)90049-3. S2CID   119360538.
  76. Roberts, C.D.; Schmidt, S.M. (2000). "Dyson-Schwinger equations: Density, temperature and continuum strong QCD". Progress in Particle and Nuclear Physics . 45: S1–S103. arXiv: nucl-th/0005064 . Bibcode:2000PrPNP..45S...1R. doi:10.1016/S0146-6410(00)90011-5. S2CID   116933709.
  77. Roberts, C.D.; Bhagwat, M.S.; Holl, A.; Wright, S.V. (2007). "Aspects of hadron physics". European Physical Journal ST . 140 (1): 53–116. arXiv: 0802.0217 . Bibcode:2007EPJST.140...53R. doi:10.1140/epjst/e2007-00003-5. S2CID   9662258.
  78. Cloet, I. C.; Roberts, C. D. (2014). "Explanation and Prediction of Observables using Continuum Strong QCD". Progress in Particle and Nuclear Physics . 77: 1–69. arXiv: 1310.2651 . Bibcode:2014PrPNP..77....1C. doi:10.1016/j.ppnp.2014.02.001. S2CID   118662043.
  79. 1 2 Brodsky, S.J.; Franke, V.A.; Hiller, J.R.; McCartor, G.; Paston, S.A.; Prokhvatilov, E.V. (2004). "A nonperturbative calculation of the electron's magnetic moment". Nuclear Physics B . 703 (1): 333–362. arXiv: hep-ph/0406325 . Bibcode:2004NuPhB.703..333B. doi:10.1016/j.nuclphysb.2004.10.027. S2CID   118978489.
  80. Chabysheva, S.S.; Hiller, J.R. (2010). "A nonperturbative calculation of the electron's magnetic moment with truncation extended to two photons". Physical Review D . 81 (7): 074030. arXiv: 0911.4455 . Bibcode:2010PhRvD..81g4030C. doi:10.1103/PhysRevD.81.074030. S2CID   14650205.
  81. Chabysheva, S.S.; Hiller, J.R. (2011). "A first nonperturbative calculation in light-front QED for an arbitrary covariant gauge". Physical Review D . 84 (3): 034001. arXiv: 1102.5107 . Bibcode:2011PhRvD..84c4001C. doi:10.1103/PhysRevD.84.034001. S2CID   118594096.
  82. Zhao, X.; Honkanen, H.; Maris, P.; Vary, J.P.; Brodsky, S.J. (2012). "Electron Anomalous Magnetic Moment in Basis Light-Front Quantization Approach". Few Body Systems . 52 (3–4): 339–344. arXiv: 1110.0553 . Bibcode:2012FBS....52..339Z. doi:10.1007/s00601-011-0273-2. S2CID   14813759.
  83. Zhao, X.; Honkanen, H.; Maris, P.; Vary, J. P.; Brodsky, S. J. (2014). "Electron g-2 in Light-Front Quantization". Physics Letters B. 737 (2014): 65–69. arXiv: 1402.4195 . Bibcode:2014PhLB..737...65Z. doi:10.1016/j.physletb.2014.08.020. S2CID   44229174.
  84. Brodsky, S.J.; Hiller, J.R.; McCartor, G. (2006). "Two-boson truncation of Pauli-Villars-regulated Yukawa theory". Annals of Physics . 321 (5): 1240–1264. arXiv: hep-ph/0508295 . Bibcode:2006AnPhy.321.1240B. doi:10.1016/j.aop.2005.09.005. S2CID   14942119.
  85. 1 2 Mathiot, J.F.; Smirnov, A.V.; Tsirova, N.A.; Karmanov, V.A. (2011). "Nonperturbative renormalization in light-front dynamics and applications". Few Body Systems . 49 (1–4): 183–203. arXiv: 1009.5269 . Bibcode:2011FBS....49..183M. doi:10.1007/s00601-010-0188-3. S2CID   53377236.
  86. R.J. Perry; A. Harindranath; K.G. Wilson (1990). "Light-front Tamm-Dancoff field theory". Physical Review Letters . 65 (24): 2959–2962. Bibcode:1990PhRvL..65.2959P. doi:10.1103/PhysRevLett.65.2959. PMID   10042743.
  87. Karmanov, V. A.; Mathiot, J.-F.; Smirnov, A. V. (2012). "Ab initiononperturbative calculation of physical observables in light-front dynamics: Application to the Yukawa model". Physical Review D. 86 (8): 085006. arXiv: 1204.3257 . Bibcode:2012PhRvD..86h5006K. doi:10.1103/PhysRevD.86.085006. ISSN   1550-7998. S2CID   119000243.
  88. S.S. Chabysheva; J.R. Hiller (2010). "On the nonperturbative solution of Pauli--Villars regulated light-front QED: A comparison of the sector-dependent and standard parameterizations". Annals of Physics . 325 (11): 2435–2450. arXiv: 0911.3686 . Bibcode:2010AnPhy.325.2435C. doi:10.1016/j.aop.2010.05.006. S2CID   119202942.
  89. S. S. Chabysheva; J. R. Hiller (2012). "A Light-Front Coupled-Cluster Method for the Nonperturbative Solution of Quantum Field Theories". Physics Letters B . 711 (5): 417–422. arXiv: 1103.0037 . Bibcode:2012PhLB..711..417C. doi:10.1016/j.physletb.2012.04.032. S2CID   119235289.
  90. S. Elser; A. C. Kalloniatis (1996). "QED in (1+1)-dimensions at finite temperature: A Study with light cone quantization". Physics Letters B . 375 (1): 285–291. arXiv: hep-th/9601045 . Bibcode:1996PhLB..375..285E. CiteSeerX   10.1.1.262.7431 . doi:10.1016/0370-2693(96)00201-8. S2CID   18486461.
  91. 1 2 J. Raufeisen; S. J. Brodsky (2005). "Finite-temperature field theory on the light front". Few Body Systems . 36 (1–4): 225–230. arXiv: hep-th/0409157 . Bibcode:2005FBS....36..225R. CiteSeerX   10.1.1.266.3987 . doi:10.1007/s00601-004-0106-7. S2CID   10955640.
  92. 1 2 J. Raufeisen; S. J. Brodsky (2004). "Statistical physics and light-front quantization". Physical Review D . 70 (8): 085017. arXiv: hep-th/0408108 . Bibcode:2004PhRvD..70h5017R. doi:10.1103/PhysRevD.70.085017. S2CID   46281962.
  93. S. Strauss; M. Beyer (2008). "Light front QED(1+1) at finite temperature". Physical Review Letters . 101 (10): 100402. arXiv: 0805.3147 . Bibcode:2008PhRvL.101j0402S. doi:10.1103/PhysRevLett.101.100402. PMID   18851196. S2CID   1078935.
  94. J. R. Hiller; S. Pinsky; Y. Proestos; N. Salwen; U. Trittmann (2007). "Spectrum and thermodynamic properties of two-dimensional N=(1,1) super Yang-Mills theory with fundamental matter and a Chern-Simons term". Physical Review D . 76 (4): 045008. arXiv: hep-th/0702071 . Bibcode:2007PhRvD..76d5008H. doi:10.1103/PhysRevD.76.045008. hdl:1811/48046. S2CID   14119315.
  95. U. Kulshreshtha; D. S. Kulshreshtha; J. P. Vary (2015). "Hamiltonian, Path Integral and BRST Formulations of Large N Scalar $QCD_{2}$ on the Light-Front and Spontaneous Symmetry Breaking". Eur. Phys. J. C . 75 (4): 174. arXiv: 1503.06177 . Bibcode:2015EPJC...75..174K. doi:10.1140/epjc/s10052-015-3377-x. S2CID   119102254.
  96. D. S. Kulshreshtha; U. Kulshreshtha; J. P. Vary (2016). "Light-Front Quantization of the Restricted Gauge Theory of QCD$_{2}$". Few Body Systems. 57 (8): 669. Bibcode:2016FBS....57..669K. doi:10.1007/s00601-016-1076-2. S2CID   124799003.