Lightwave Electronics Corporation

Last updated
A Lightwave Electronics model 122 microprocessor controlled Nd:YAG laser, produced in about 1990. This laser was based on the nonplanar ring oscillator design. This continuous-wave, single-frequency laser was aimed at the laboratory market. Lightwave Electronic's biggest market was for OEM lasers, (lasers used as components in other manufacturer's systems), primarily Q-switched lasers for micromachining. Lightwave Electronics laser model 122, complete, with covers.jpg
A Lightwave Electronics model 122 microprocessor controlled Nd:YAG laser, produced in about 1990. This laser was based on the nonplanar ring oscillator design. This continuous-wave, single-frequency laser was aimed at the laboratory market. Lightwave Electronic's biggest market was for OEM lasers, (lasers used as components in other manufacturer's systems), primarily Q-switched lasers for micromachining.

Lightwave Electronics Corporation was a developer and manufacturer of diode-pumped solid-state lasers, and was a significant contributor to the creation [1] and maturation of this technology. Lightwave Electronics was a technology-focused company, with diverse markets, [2] including science and micromachining. Inventors employed by Lightwave Electronics received 51 US patents, [3] and Lightwave Electronics products were referenced by non-affiliated inventors in 91 US patents. [4]

Contents

Lightwave Electronics was a California corporation, which was founded in 1984. Some of the founders were Robert L. Mortensen, a former executive at the laser manufacturer Spectra Physics, and Drs. Robert L. Byer and David Bloom, both professors at Stanford University. The Newport Corporation, then headed by Dr. Milton Chang, was a significant early investor. Mortensen was president at the company’s founding, and he served as president for almost 15 years. [5] Phillip Meredith was president from 2000 until the sale of the company in 2005. [6] JDS Uniphase Corporation (JDSU, now Lumentum, stock ticker LITE) purchased Lightwave in 2005, for $65M. [7] [8] At that time, the company had 120 employees. The company was located in Mountain View, California.

Products

In the scientific community, Lightwave Electronics was best known for single-frequency lasers based on the nonplanar ring oscillator design. [9] These lasers operated at the wavelengths of 1064 nm and 1319 nm, and were based on the laser material neodymium-doped yttrium-aluminum garnet (Nd:YAG). The first-generation Laser Interferometer Gravitational Wave Observatory (LIGO) was based on these lasers, operating at 1064 nm. [10] Two Lightwave nonplanar oscillators were launched into space in 2004 as components of NASA’s Tropospheric Emission Spectrometer, an earth-observing satellite instrument which was still operational in 2015. [11] Lightwave Electronics produced a visible (532 nm) laser source based on frequency doubling the output of a nonplanar ring oscillator. [12] The nonlinear material used was magnesium-doped lithium niobate. Another member of the nonplanar ring product family was an “injection seeding” system which was used to enforce single-frequency oscillation in 1-joule-level lamp-pumped Q-switched lasers, improving the utility of those lasers for quantitative spectroscopy. [13] [14] This injection seeding system was the first Lightwave Electronics product with significant sales.

Lightwave Electronics' first significant success in industrial markets was a series of acousto-optically Q-switched lasers [15] [16] at 1047 nm, based on neodymium-doped yttrium lithium fluoride (Nd:YLF), and at 1342 nm, based on neodymium-doped yttrium orthovanadate, which were used to improve yield in semiconductor memory manufacturing. For about 2 decades, from about 1988 to 2008, semiconductor manufacturers used the Lightwave Electronics miniature Q-switched lasers in the link blowing step [17] during the production of the majority of the world’s dynamic random-access memory chips. These miniature Q-switched lasers were in systems built by Electro Scientific Industries, GSI, and Nikon.

Also of significant industrial importance was a series of internally frequency converted Q-switched lasers, with 2 to 20 Watt of ultraviolet output at 355 nm, [18] used for a variety of micromachining applications. Lightwave introduced these UV lasers in 1998. The nonlinear frequency converting material was lithium triborate (LBO). Lightwave’s Q-switched multi-watt UV lasers emitted longer pulses than competing lasers and allowed effective processing of materials, [19] probably by melting as opposed to ablation (vaporization), thus lowering the power needed for removing material in operations such as laser-drilling small holes in circuit boards, or laser-cutting circuit boards [20]

For a few years (circa 1996), Lightwave Electronics produced an acousto-optically mode-locked laser with low frequency jitter and drift. The most significant application was for high-speed measurements of voltages as a step in the design and improvement of integrated circuits. [21] A distinct line of mode-locked lasers produced ultraviolet output at 355 nm, used for fluorescence excitation in flow cytometry applications. [22] Mode-locking was passive, using a semiconductor saturable absorber. In the late 1990s Lightwave Electronics produced a Nd:YAG laser internally frequency doubled to 532 nm with potassium titanyl phosphate (KTP), used in ophthalmology.

Technology

Photograph shows the technique used to mount optics in a Lightwave Electronics single-frequency frequency-doubled laser. The optic in the left foreground is bonded with a thin layer of UV-curing adhesive to a support block, also made of glass, which is bonded to the platform. This design approach allows 5 degrees of freedom for the optic, with a thin adhesive bond. Lightwave Electronics model 142 Laser Optics Fix.jpg
Photograph shows the technique used to mount optics in a Lightwave Electronics single-frequency frequency-doubled laser. The optic in the left foreground is bonded with a thin layer of UV-curing adhesive to a support block, also made of glass, which is bonded to the platform. This design approach allows 5 degrees of freedom for the optic, with a thin adhesive bond.

Early products benefited from relationships with Stanford University and other Bay Area laboratories. The nonplanar ring oscillator technology was invented at Stanford University, [24] and the patent [25] was licensed to Lightwave Electronics. The injection seeding product was developed with cooperation from SRI International and Sandia National Laboratories (Livermore). [13] [14]

Lightwave Electronics is listed as the assignee on 51 United States patents. [3] Several of these relate to active laser stabilization, including stabilization of optical frequency, [26] of intensity, [27] and of pulse repetition rate [28] and pulse energy. [29] Another set relate to laser manufacturing techniques. Early Lightwave Electronics lasers used solder to permanently mount optics in place. [30] Later lasers, such the one shown in the figure, used adhesive cured by ultraviolet light. [23] [31]

Lightwave Electronics' nonplanar ring lasers, and the infrared Q-switched lasers used for DRAM production, were "end-pumped," meaning that the beam from the semiconductor laser pump was co-axial with the beam of the pumped laser. Later lasers, including all of the 355 nm lasers, were side-pumped. Small-diameter (<2 mm) Nd:YAG rods were pumped by powerful (>20 watt), large-aperture semiconductor lasers placed alongside the rods. Lightwave Electronics developed and patented a design enabling efficient side-pumping of a laser while maintaining diffraction-limited output. [32] The end-pumped pumped products were limited in power to less than 1 watt, while side-pumped products have exceeded 20 watts.

Lightwave Electronics made extensive use of the Small Business Innovation Research (SBIR) Program, established in 1982.

Successor Companies

Spin-off companies from Lightwave Electronics Corporation include Electro-Optics Technology, of Traverse City MI; Time-Bandwidth Products of Zurich, Switzerland, now a part of Lumentum; and Mobius Photonics, [33] acquired by IPG Photonics. Products sold by Lumentum in 2015 which derive from Lightwave Electronics Corporation products are: the NPRO 125/126 series nonplanar ring lasers, the Q-series Q-switched 355 nm lasers, and the Xcyte quasi-continuous 355 nm lasers. [34]

Related Research Articles

<span class="mw-page-title-main">Laser</span> Device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow.

<span class="mw-page-title-main">Optical amplifier</span> Device that amplifies an optical signal

An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from the cavity is suppressed. Optical amplifiers are important in optical communication and laser physics. They are used as optical repeaters in the long distance fiber-optic cables which carry much of the world's telecommunication links.

<span class="mw-page-title-main">Laser diode</span> Semiconductor laser

A laser diode is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction.

Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example, in modern refractive surgery. The basis of the technique is to induce a fixed phase relationship between the longitudinal modes of the laser's resonant cavity. Constructive interference between these modes can cause the laser light to be produced as a train of pulses. The laser is then said to be "phase-locked" or "mode-locked".

<span class="mw-page-title-main">Dye laser</span> Equipment using an organic dye to emit coherent light

A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds. Moreover, the dye can be replaced by another type in order to generate an even broader range of wavelengths with the same laser, from the near-infrared to the near-ultraviolet, although this usually requires replacing other optical components in the laser as well, such as dielectric mirrors or pump lasers.

<span class="mw-page-title-main">Vertical-cavity surface-emitting laser</span> Type of semiconductor laser diode

The vertical-cavity surface-emitting laser is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers which emit from surfaces formed by cleaving the individual chip out of a wafer. VCSELs are used in various laser products, including computer mice, fiber optic communications, laser printers, Face ID, and smartglasses.

<span class="mw-page-title-main">Nd:YAG laser</span> Crystal used as a lasing medium for solid-state lasers

Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12) is a crystal that is used as a lasing medium for solid-state lasers. The dopant, neodymium in the +3 oxidation state, Nd(III), typically replaces a small fraction (1%) of the yttrium ions in the host crystal structure of the yttrium aluminum garnet (YAG), since the two ions are of similar size. It is the neodymium ion which provides the lasing activity in the crystal, in the same fashion as red chromium ion in ruby lasers.

<span class="mw-page-title-main">Titanium-sapphire laser</span> Type of laser

Titanium-sapphire lasers (also known as Ti:sapphire lasers, Ti:Al2O3 lasers or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses thanks to its broad light emission spectrum. Lasers based on Ti:sapphire were first constructed and invented in June 1982 by Peter Moulton at the MIT Lincoln Laboratory.

<span class="mw-page-title-main">Tunable laser</span>

A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a significant wavelength range.

A vertical-external-cavity surface-emitting-laser (VECSEL) is a small semiconductor laser similar to a vertical-cavity surface-emitting laser (VCSEL). VECSELs are used primarily as near infrared devices in laser cooling and spectroscopy, but have also been explored for applications such as telecommunications.

<span class="mw-page-title-main">Yttrium aluminium garnet</span> Synthetic crystalline material of the garnet group

Yttrium aluminium garnet (YAG, Y3Al5O12) is a synthetic crystalline material of the garnet group. It is a cubic yttrium aluminium oxide phase, with other examples being YAlO3 (YAP) in a hexagonal or an orthorhombic, perovskite-like form, and the monoclinic Y4Al2O9 (YAM).

<span class="mw-page-title-main">Blue laser</span> Laser which emits light with blue wavelengths

A blue laser emits electromagnetic radiation with a wavelength between 400 and 500 nanometers, which the human eye sees in the visible spectrum as blue or violet.

<span class="mw-page-title-main">Solid-state laser</span> Laser which uses a solid gain medium

A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called laser diodes.

This is a list of acronyms and other initialisms used in laser physics and laser applications.

<span class="mw-page-title-main">Supercontinuum</span>

In optics, a supercontinuum is formed when a collection of nonlinear processes act together upon a pump beam in order to cause severe spectral broadening of the original pump beam, for example using a microstructured optical fiber. The result is a smooth spectral continuum. There is no consensus on how much broadening constitutes a supercontinuum; however researchers have published work claiming as little as 60 nm of broadening as a supercontinuum. There is also no agreement on the spectral flatness required to define the bandwidth of the source, with authors using anything from 5 dB to 40 dB or more. In addition the term supercontinuum itself did not gain widespread acceptance until this century, with many authors using alternative phrases to describe their continua during the 1970s, 1980s and 1990s.

Neodymium-doped yttrium lithium fluoride (Nd:YLF) is a lasing medium for arc lamp-pumped and diode-pumped solid-state lasers. The YLF crystal (LiYF4) is naturally birefringent, and commonly used laser transitions occur at 1047 nm and 1053 nm.

EKSPLA is a laser and laser electronics manufacturing company based in Vilnius, Lithuania. EKSPLA is known for their lasers and laser systems, as well as other photonics components. The company is supplying their products for scientific, OEM and industrial applications.

<span class="mw-page-title-main">Robert L. Byer</span> American physicist

Robert Louis Byer is a physicist. He was president of the Optical Society of America in 1994 and of the American Physical Society in 2012.

Anthony E. Siegman was an electrical engineer and educator at Stanford University who investigated and taught about masers and lasers. Known to almost all as Tony Siegman, he was president of the Optical Society of America [now Optica (society)] in 1999 and was awarded the Esther Hoffman Beller Medal in 2009.

<span class="mw-page-title-main">Pr:YLF laser</span> Type of solid-state laser

A Pr:YLF laser (or Pr3+:LiYF4 laser) is a solid state laser that uses a praseodymium doped yttrium-lithium-fluoride crystal as its gain medium. The first Pr:YLF laser was built in 1977 and emitted pulses at 479 nm. Pr:YLF lasers can emit in many different wavelengths in the visible spectrum of light, making them potentially interesting for RGB applications and materials processing. Notable emission wavelengths are 479 nm, 523 nm, 607 nm and 640 nm.

References

  1. Jeff Hecht, "Photonic Frontiers: Laser diodes: Looking back/Looking forward: Laser diodes have come a long way and brought five Nobel prizes," Laser Focus World, April 2015
  2. Anne Gibbons, “Optics Boom Spawns Need For More Experts,” The Scientist, May 1, 1989
  3. 1 2 Search US Patents with Assignee Name = Lightwave Electronics
  4. Search US Patents with Description/Specification = Lightwave Electronics and Assignee Name ≠ Lightwave Electronics
  5. Reuters, "Mobius Photonics Names Robert L. Mortensen CEO," Sept 15, 2009. [ dead link ]
  6. Bloomberg, Company Overview of Lightwave Electronics Corporation, Executive Profile, Phillip Meredith.
  7. Laser Focus World, "JDSU buys Lightwave Electronics for $65 million," March 21, 2005.
  8. JDS Uniphase Corporation's 10-K form, filed Aug. 29, 2007, states that the purchase was “for approximately $67.2 million in cash.”
  9. RP Photonics Encyclopedia of Laser Physics (online), "Nonplanar Ring Oscillators,"
  10. https://www.advancedligo.mit.edu/diode_laser.html
  11. Deep Space Optical Communications, edited by Hamid Hemmati, page 444-445. Wiley.
  12. D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, "Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler," Opt. Lett. 16, 992-994 (1991)
  13. 1 2 Randal L. Schmitt and Larry A. Rahn, "Diode-laser-pumped Nd:YAG laser injection seeding system," Appl. Opt. 25, 629-633 (1986)
  14. 1 2 M. J. Dyer, W. K. Bischel, and D. G. Scerbak, "Injection locking of Nd:YAG lasers using a diode-pumped cw YAG seed laser," in Conference on Lasers and Electro-Optics, Vol. 14 of OSA Technical Digest (1987), paper WN4.
  15. US Patent 5,130,995, “Laser with Brewster angled-surface Q-switch aligned co-axially.”
  16. William M. Grossman, Martin Gifford, and Richard W. Wallace. "Short-pulse Q-switched 1.3-and 1-μm diode-pumped lasers." Opt. Let. 15, 622-624 (1990)
  17. Edward J. Swenson ; Yunlong Sun and Corey M. Dunsky "Laser micromachining in the microelectronics industry: a historical overview", Proc. SPIE 4095, Laser Beam Shaping, 118 (October 25, 2000)
  18. US Patent 5,850,407, “Third-harmonic generator with uncoated brewster-cut dispersive output facet.”
  19. Rizvi, Nadeem H., et al. "Micromachining of industrial materials with ultrafast lasers." Proc. ICALEO. Vol. 15. No. 1. 2001.
  20. L. Rihakova and H. Chmelickova, “Laser Micromachining of Glass, Silicon, and Ceramics,” Advances in Materials Science and Engineering, vol. 2015
  21. US Patent 6,496,261, "Double-pulsed optical interferometer for waveform probing of integrated circuits."
  22. Farr, C.; Berger, S. (2010). "Measuring Calpain Activity in Fixed and Living Cells by Flow Cytometry". Journal of Visualized Experiments (41): 2050. doi:10.3791/2050. PMC   3156068 . PMID   20644512.
  23. 1 2 US Patent 6,366,593, "Adhesive precision positioning mount."
  24. Thomas J. Kane and Robert L. Byer, "Monolithic, unidirectional single-mode Nd:YAG ring laser," Opt. Lett. 10, 65-67 (1985)
  25. US Patent 4,578,793, "Solid-state non-planar internally reflecting ring laser."
  26. US Patent 4,829,532, "Piezo-electrically tuned optical resonator and laser using same."
  27. US Patent 5,757,831, "Electronic suppression of optical feedback instabilities in a solid-state laser."
  28. US Patent 6,909,730, "Phase-locked loop control of passively Q-switched lasers."
  29. US Patent 5,982,790, "System for reducing pulse-to-pulse energy variation in a pulsed laser."
  30. US Patent 4,749,842, "Ring laser and method of making same."
  31. US Patent 6,320,706, "Method and apparatus for positioning and fixating an optical element."
  32. US Patent 5,774,488, "Solid-state laser with trapped pump light."
  33. Optics.org, "Start-up Spotlight: Mobius Photonics," April 11, 2008.
  34. Lumentum company website, Commercial Product Finder.