Lignin characterization

Last updated

The term "lignin characterization" (or "lignin analysis") refers to a group of activities within lignin research aiming at describing the characteristics of a lignin by determination of its most important properties. [1] Most often, this term is used to describe the characterization of technical lignins by means of chemical or thermo-chemical analysis. Technical lignins are lignins isolated from various biomasses during various kinds of technical processes such as wood pulping. The most common technical lignins include lignosulphonates (isolated from sulfite pulping), kraft lignins (isolated from kraft pulping black liquor), organosolv lignins (isolated from organosolv pulping), soda lignins (isolated from soda pulping) and lignin residue after enzymatic treatment of biomass.

Contents

Important characteristics

Lignins can be characterized by determination of their purity, molecular structure and thermal properties. [2] [3] [4] For certain applications, other properties such as electrical properties or color may be relevant to determine.[ citation needed ]

Purity

Dry matter content

The dry matter content of lignins is the residue after drying at specified conditions. Any matter that is volatile at the drying conditions is not included in the dry matter content. The moisture content can be approximated by 100% minus the dry matter content. To determine the dry matter content, The sample is dried at a temperature of 105±2 °C. The mass before and after the drying is determined gravimetrically. The dry matter content of sample is calculated as the ratio of mass after to the mass before the drying.

Lignin content

The lignin content can be defined as the sum of the amount of acid-insoluble matter and acid-soluble matter, absorbing at 205 nm, after sulphuric acid hydrolysis during specified conditions, as determined by gravimetry and spectrophotometry, in milligrams per gram. In the determination, the samples are hydrolyzed with sulphuric acid using a two-step technique. The amount of lignin is determined using gravimetry and spectrophotometry. [5]

Carbohydrate content

The carbohydrate content can be defined as the sum of the amounts of the five principal, neutral wood monosaccharides; arabinose, galactose, glucose, mannose and xylose in anhydrous form, in a sample, in milligrams per gram. In the determination, the samples are hydrolyzed with sulphuric acid using a two-step technique. The amounts of the different monosaccharides are determined using ion chromatography (IC).[ citation needed ]

Ash content

The ash content can be defined as the gravimetrically determined residue after ignition at a defined temperature, in a sample, in percent (weight / weight dry matter of sample). In the determination, a sample is weighed in a heat-resistant crucible, dried at 105±2 °C, and ignited in a muffle furnace at 525±25 °C. The ash content is then determined, on a moisture-free basis, from the weight of residue after ignition and the moisture content of the sample.[ citation needed ]

Metal/elements content

The metal elements content (including sulphur) may be determined as the sum of the elements Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Si, S and Zn after oxidation and acid digestion. The metal elements can be determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) after wet digestion. In such a determination, the samples are oxidized by hydrogen peroxide and subsequently acid digested in a closed vessel using a microwave acid digestion apparatus. After cooling, the samples are diluted and the concentration of each element determined by the ICP-OES.[ citation needed ]

Extractives content

The extractives content can be defined as the sum of matter that can be extracted by petroleum ether, and that does not evaporate during drying. This material consists mainly of fatty acids, resin acids, fatty alcohols, sterols, glycerides and steryl esters. In the determination, the samples are extracted with petroleum ether in a for instance a Soxtec apparatus. After extraction, the solvents are evaporated and the residue is dried. Note that petroleum ether extracts may also contain elemental sulphur, S8, if present in the lignin sample. If the dried extracts contain a yellowish precipitate, this indicates that sulphur is present.[ citation needed ]

Molecular structure

Hydroxyl groups

The main hydroxyl groups in lignin are aliphatic (R–OH), phenolic (Ph–OH) and carboxylic acid (R–COOH) hydroxyl groups. Phenolic hydroxyl groups are syringyl (S), guaiacyl (G) and p-hydroxyphenyl (H) structures and C5-substituted (i.e. having β-5, 4-O-5 and 5-5 inter-unit linkages) structures. The hydroxyl groups may be determined by 31P nuclear magnetic resonance spectroscopy. In such a determination, the lignin sample is dissolved using a mixture of DMF and pyridine (in excess for a quantitative reaction), in the presence of an internal standard (IS) and a relaxation reagent (RR), and then phosphitylated using a mixture of a derivatisation regent (DR) and deuterated chloroform. The phosphitylated sample is then scanned using liquide state 31P-NMR spectroscopy and the hydroxyl groups are quantified by integration of the corresponding signals from obtained 31P-NMR spectra.[ citation needed ]

Structural elements

Structural elements in lignins are the building blocks in the macromolecule corresponding to the monomers and the intra-molecular bonds. For lignins, the structural elements are often determined by pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) or nuclear magnetic resonance spectroscopy (NMR).[ citation needed ]

Molar mass distribution

The molar mass distribution of lignin describe the relationship between the number of moles of each lignin molecule species and the molar mass of that species. Different average values can be defined, depending on the statistical method applied. For lignins, weight-average molar mass (Mw) and number-average molar mass (Mn) are often determined. In addition, the peak molar mass (Mp) is often determined. For kraft lignins, the molar mass distribution can be determined by aqueous phase or organic phase size-exclusion chromatography.[ citation needed ]

Thermal properties

Glass transition temperature

The glass transition temperature (Tg) can be defined by the temperature at which an amorphous polymeric material undergoes a reversible transition from a hard, solid state to a more rubbery state, as determined as inflection point of the heat capacity-temperature curve recorded by differential scanning calorimetry (DSC). In the determination, the samples are often dried at 105 °C and subsequently analyzed by DSC in a hermetic aluminum pan by increasing the temperature above the Tg, and recording the heat capacity-temperature curve. [6]

Electric properties

Carbonized lignin can be used in electrical applications such as batteries and supercapacitors. The electrical properties of carbonized lignin can be assessed with techniques such as two-and four-point method, impedance spectroscopy, galvanostatic charge-discharge and cyclic voltammetry. [7]

Related Research Articles

<span class="mw-page-title-main">Ether</span> Organic compounds made of alkyl/aryl groups bound to oxygen (R–O–R)

In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. They have the general formula R−O−R′, where R and R′ represent the alkyl or aryl groups. Ethers can again be classified into two varieties: if the alkyl or aryl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anaesthetic diethyl ether, commonly referred to simply as "ether". Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.

The molecular mass (m) is the mass of a given molecule, for which the unit dalton (Da) is used. Different molecules of the same compound may have different molecular masses because they contain different isotopes of an element. The related quantity relative molecular mass, as defined by IUPAC, is the ratio of the mass of a molecule to the atomic mass constant (which is equal to one dalton) and is unitless. The molecular mass and relative molecular mass are distinct from but related to the molar mass. The molar mass is defined as the mass of a given substance divided by the amount of a substance and is expressed in g/mol. That makes the molar mass an average of many particles or molecules, and the molecular mass the mass of one specific particle or molecule. The molar mass is usually the more appropriate quantity when dealing with macroscopic (weigh-able) quantities of a substance.

<span class="mw-page-title-main">Lignin</span> Structural phenolic polymer in plant cell walls

Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity and do not rot easily. Chemically, lignins are polymers made by cross-linking phenolic precursors.

<span class="mw-page-title-main">Vanillin</span> Chemical compound

Vanillin is an organic compound with the molecular formula C8H8O3. It is a phenolic aldehyde. Its functional groups include aldehyde, hydroxyl, and ether. It is the primary component of the extract of the vanilla bean. Synthetic vanillin is now used more often than natural vanilla extract as a flavoring in foods, beverages, and pharmaceuticals.

<span class="mw-page-title-main">Electron ionization</span> Ionization technique

Electron ionization is an ionization method in which energetic electrons interact with solid or gas phase atoms or molecules to produce ions. EI was one of the first ionization techniques developed for mass spectrometry. However, this method is still a popular ionization technique. This technique is considered a hard ionization method, since it uses highly energetic electrons to produce ions. This leads to extensive fragmentation, which can be helpful for structure determination of unknown compounds. EI is the most useful for organic compounds which have a molecular weight below 600. Also, several other thermally stable and volatile compounds in solid, liquid and gas states can be detected with the use of this technique when coupled with various separation methods.

<span class="mw-page-title-main">Polyphenol</span> Class of chemical compounds

Polyphenols are a large family of naturally occurring phenols. They are abundant in plants and structurally diverse. Polyphenols include flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

<span class="mw-page-title-main">Metabolomics</span> Scientific study of chemical processes involving metabolites

Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprints that specific cellular processes leave behind", the study of their small-molecule metabolite profiles. The metabolome represents the complete set of metabolites in a biological cell, tissue, organ, or organism, which are the end products of cellular processes. Messenger RNA (mRNA), gene expression data, and proteomic analyses reveal the set of gene products being produced in the cell, data that represents one aspect of cellular function. Conversely, metabolic profiling can give an instantaneous snapshot of the physiology of that cell, and thus, metabolomics provides a direct "functional readout of the physiological state" of an organism. There are indeed quantifiable correlations between the metabolome and the other cellular ensembles, which can be used to predict metabolite abundances in biological samples from, for example mRNA abundances. One of the ultimate challenges of systems biology is to integrate metabolomics with all other -omics information to provide a better understanding of cellular biology.

<span class="mw-page-title-main">Protein sequencing</span> Sequencing of amino acid arrangement in a protein

Protein sequencing is the practical process of determining the amino acid sequence of all or part of a protein or peptide. This may serve to identify the protein or characterize its post-translational modifications. Typically, partial sequencing of a protein provides sufficient information to identify it with reference to databases of protein sequences derived from the conceptual translation of genes.

<span class="mw-page-title-main">Saponification value</span> Milligrams of a base required to saponify 1g of fat

Saponification value or saponification number represents the number of milligrams of potassium hydroxide (KOH) or sodium hydroxide (NaOH) required to saponify one gram of fat under the conditions specified. It is a measure of the average molecular weight of all the fatty acids present in the sample in form of triglycerides. The higher the saponification value, the lower the fatty acids average length, the lighter the mean molecular weight of triglycerides and vice versa. Practically, fats or oils with high saponification value are more suitable for soap making.

<span class="mw-page-title-main">Elemental analysis</span> Process of analytical chemistry

Elemental analysis is a process where a sample of some material is analyzed for its elemental and sometimes isotopic composition. Elemental analysis can be qualitative, and it can be quantitative. Elemental analysis falls within the ambit of analytical chemistry, the instruments involved in deciphering the chemical nature of our world.

<span class="mw-page-title-main">Nuclear magnetic resonance spectroscopy</span> Laboratory technique

Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds.

In polymer chemistry, the molar mass distribution describes the relationship between the number of moles of each polymer species and the molar mass of that species. In linear polymers, the individual polymer chains rarely have exactly the same degree of polymerization and molar mass, and there is always a distribution around an average value. The molar mass distribution of a polymer may be modified by polymer fractionation.

In analytical chemistry, ashing or ash content determination is the process of mineralization for preconcentration of trace substances prior to a chemical analysis, such as chromatography, or optical analysis, such as spectroscopy.

Tall oil, also called liquid rosin or tallol, is a viscous yellow-black odorous liquid obtained as a by-product of the kraft process of wood pulp manufacture when pulping mainly coniferous trees. The name originated as an anglicization of the Swedish tallolja. Tall oil is the third largest chemical by-product in a kraft mill after lignin and hemicellulose; the yield of crude tall oil from the process is in the range of 30–50 kg / ton pulp. It may contribute to 1.0–1.5% of the mill's revenue if not used internally.

Nuclear magnetic resonance spectroscopy of proteins is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, Angela Gronenborn at the NIH, and Gerhard Wagner at Harvard University, among others. Structure determination by NMR spectroscopy usually consists of several phases, each using a separate set of highly specialized techniques. The sample is prepared, measurements are made, interpretive approaches are applied, and a structure is calculated and validated.

The heteronuclear single quantum coherence or heteronuclear single quantum correlation experiment, normally abbreviated as HSQC, is used frequently in NMR spectroscopy of organic molecules and is of particular significance in the field of protein NMR. The experiment was first described by Geoffrey Bodenhausen and D. J. Ruben in 1980. The resulting spectrum is two-dimensional (2D) with one axis for proton (1H) and the other for a heteronucleus, which is usually 13C or 15N. The spectrum contains a peak for each unique proton attached to the heteronucleus being considered. The 2D HSQC can also be combined with other experiments in higher-dimensional NMR experiments, such as NOESY-HSQC or TOCSY-HSQC.

Hydrogen–deuterium exchange is a chemical reaction in which a covalently bonded hydrogen atom is replaced by a deuterium atom, or vice versa. It can be applied most easily to exchangeable protons and deuterons, where such a transformation occurs in the presence of a suitable deuterium source, without any catalyst. The use of acid, base or metal catalysts, coupled with conditions of increased temperature and pressure, can facilitate the exchange of non-exchangeable hydrogen atoms, so long as the substrate is robust to the conditions and reagents employed. This often results in perdeuteration: hydrogen-deuterium exchange of all non-exchangeable hydrogen atoms in a molecule.

<span class="mw-page-title-main">Chiral derivatizing agent</span> Reagent for converting a chemical compound to a chiral derivative

In analytical chemistry, A chiral derivatizing agent (CDA), also known as a chiral resolving reagent, is a derivatization reagent that is a chiral auxiliary used to convert a mixture of enantiomers into diastereomers in order to analyze the quantities of each enantiomer present and determine the optical purity of a sample. Analysis can be conducted by spectroscopy or by chromatography. Some analytical techniques such as HPLC and NMR, in their most commons forms, cannot distinguish enantiomers within a sample, but can distinguish diastereomers. Therefore, converting a mixture of enantiomers to a corresponding mixture of diastereomers can allow analysis. The use of chiral derivatizing agents has declined with the popularization of chiral HPLC. Besides analysis, chiral derivatization is also used for chiral resolution, the actual physical separation of the enantiomers.

Experimental approaches of determining the structure of nucleic acids, such as RNA and DNA, can be largely classified into biophysical and biochemical methods. Biophysical methods use the fundamental physical properties of molecules for structure determination, including X-ray crystallography, NMR and cryo-EM. Biochemical methods exploit the chemical properties of nucleic acids using specific reagents and conditions to assay the structure of nucleic acids. Such methods may involve chemical probing with specific reagents, or rely on native or analogue chemistry. Different experimental approaches have unique merits and are suitable for different experimental purposes.

In analytical chemistry, the hydroxyl value is defined as the number of milligrams of potassium hydroxide (KOH) required to neutralize the acetic acid taken up on acetylation of one gram of a chemical substance that contains free hydroxyl groups. The analytical method used to determine hydroxyl value traditionally involves acetylation of the free hydroxyl groups of the substance with acetic anhydride in pyridine solvent. After completion of the reaction, water is added, and the remaining unreacted acetic anhydride is converted to acetic acid and measured by titration with potassium hydroxide.

References

  1. Bulkowska, Katarzyna; Gusiatin, Zygmunt Mariusz; Klimiuk, Ewa; Pawlowski, Artur; Pokoj, Tomasz (8 December 2016). Biomass for Biofuels. CRC Press. ISBN   9781351850094 . Retrieved 17 April 2017 via Google Books.
  2. Lupoi, Jason S.; Singh, Seema; Parthasarathi, Ramakrishnan; Simmons, Blake A.; Henry, Robert J. (1 September 2015). "Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin". Renewable and Sustainable Energy Reviews. 49: 871–906. doi: 10.1016/j.rser.2015.04.091 .
  3. "ILI" . Retrieved 17 April 2017.
  4. "Testmetoder bioraffinaderi - Innventia" . Retrieved 17 April 2017.
  5. Aldaeus, Fredrik; Sjöholm, Elisabeth (December 2011). "COST Action FP0901 Round Robins of lignin samples Part 1: Lignin content" (PDF).
  6. "Analytical methods for lignin characterization - Differential scanning calorimetry" . Retrieved 17 April 2017.
  7. Chupka, É. I.; Rykova, T. M. (1983). "Electrical properties of lignin". Chem Nat Compd. 19 (1): 78–80. doi:10.1007/bf00579968. S2CID   37162447.