Linear alkylbenzene

Last updated
Linear alkylbenzene
Linear alkyl benzene 2.svg
Names
Other names
LAB, linear alkyl benzene
Identifiers
ChemSpider
  • none
ECHA InfoCard 100.060.937 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 267-051-0
Properties
C6H5CHR1R2 where R1 = CnH2n+1 and R2 = CmH2m+1 m,n are integers m≥0, n≥1 (typically 10-16)
Appearancecolorless liquid
Density 863 kg/m3
insoluble in water
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
flammable
Safety data sheet (SDS) MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Linear alkylbenzenes (sometimes also known as LABs) are a family of organic compounds with the formula C6H5CnH2n+1. Typically, n lies between 10 and 16, although generally supplied as a tighter cut, such as C12-C15, C12-C13 and C10-C13, for detergent use. [1] The CnH2n+1 chain is unbranched. They are mainly produced as intermediate in the production of surfactants, for use in detergent. Since the 1960s, LABs have emerged as the dominant precursor of biodegradable detergents. [2]

Contents

Production

Hydrotreated kerosene is a typical feedstock for high purity linear paraffins (n-paraffins), which are subsequently dehydrogenated to linear olefins:

CnH2n+2 → CnH2n + H2

Alternatively, ethylene can be oligomerized (partially polymerized) to produce linear alkenes. The resulting linear mono-olefins react with benzene in the presence of a catalyst to produce the LABs. Hydrogen fluoride (HF) and aluminium chloride (AlCl3) are the two major catalysts for the alkylation of benzene with linear mono-olefins. The HF-based process is commercially dominant; however, the risk of releasing HF (a poisonous substance) into the environment became a concern particularly after the Clean Air Act Amendment. In 1995, a solid catalyst system (the DETAL process) became available. The process eliminates catalyst neutralization and HF disposal. Consequently, most LAB plants built since then have utilized this process. [3]

Production details

Given the large scale applications of LAB-derived detergents, a variety routes have been developed to produce linear alkylbenzenes: [3]

Each process generates LAB products with distinct features. Important product characteristics include the bromine index, sulfonatability, amount of 2-phenyl isomers (2-phenylalkane), the tetralin content, amount of non-alkylbenzene components, and the linearity of the product.

The production of n-paraffins often occurs as part of an integrated LAB plant where the producers start from kerosene as raw material. The UOP process for producing normal paraffin includes a kerosene prefractionation unit, a hydrotreating unit and a Molex unit. [4] The ExxonMobil Chemical technology includes a recovery process and can produce LAB grade n-paraffins from most medium to low sulfur kerosene without the use of a hydrotreater stage upstream. A desulfurization process is needed to reduce the sulfur content of some n-paraffins.

Farabi Petrochemicals, Nirma are one of the manufacturers commercially produce LAB in large scale.

Applications

Linear alkylbenzene is sulfonated to produce linear alkylbenzene sulfonate (LAS), a biodegradable surfactant. LAS replaced branched dodecylbenzene sulfonates, which were phased out because they biodegrade more slowly.

Niche uses

LAB was identified as a promising liquid scintillator by the SNO+ neutrino detector [5] due to its good optical transparency (≈20 m), high light yield, low amount of radioactive impurities, and its high flash point (140 °C) which makes safe handling easier. It is also available in large volumes at a relatively low cost at the SNO+ site. [6] It is now used in several other neutrino detectors, such as the RENO and Daya Bay Reactor Neutrino Experiments. [7] The material performs well in deep underwater environments. [8] One study suggested LAB as a suitable material to be employed in a Secret Neutrino Interactions Finder (SNIF), a type of antineutrino detector designed to detect the presence of nuclear reactors at distances of between 100 and 500 km. [9]

Environmental considerations

LAB has been subject to concern about its effect on the environment and human health. European Council Regulation (EC) 1488/94 [10] led to it being extensively evaluated. The life-cycle analysis considered the emissions and resulting environmental and human exposures. Following the exposure assessment, the environmental risk characterization for each protection target in the aquatic, terrestrial and soil compartment was determined. For human health the scenarios for occupational exposure, consumer exposure and human exposure indirectly via the environment have been examined and the possible risks identified.

The report concludes that there are no concerns for the environment or human health. There is no need for further testing or risk reduction measures beyond those currently practiced. LAB was therefore de-classified and was removed from Annex 1 in the 28th ATP (Directive 2001/59).

Related Research Articles

<span class="mw-page-title-main">Hydrocarbon</span> Organic compound consisting entirely of hydrogen and carbon

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic; their odor is usually faint, and may be similar to that of gasoline or lighter fluid. They occur in a diverse range of molecular structures and phases: they can be gases, liquids, low melting solids or polymers.

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Xylene</span> Organic compounds with the formula (CH3)2C6H4

In organic chemistry, xylene or xylol are any of three organic compounds with the formula (CH3)2C6H4. They are derived from the substitution of two hydrogen atoms with methyl groups in a benzene ring; which hydrogens are substituted determines which of three structural isomers results. It is a colorless, flammable, slightly greasy liquid of great industrial value.

<span class="mw-page-title-main">Surfactant</span> Substance that lowers the surface tension between a liquid and another material

Surfactants are chemical compounds that decrease the surface tension or interfacial tension between two liquids, a liquid and a gas, or a liquid and a solid. Surfactants may function as emulsifiers, wetting agents, detergents, foaming agents, or dispersants. The word "surfactant" is a blend of surface-active agent, coined c. 1950.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

Ethoxylation is a chemical reaction in which ethylene oxide adds to a substrate. It is the most widely practiced alkoxylation, which involves the addition of epoxides to substrates.

<span class="mw-page-title-main">Alpha-olefin</span> Hydrocarbon compounds with a C=C bond at the alpha carbon

In organic chemistry, alpha-olefins are a family of organic compounds which are alkenes with a chemical formula CxH2x, distinguished by having a double bond at the primary or alpha (α) position. This location of a double bond enhances the reactivity of the compound and makes it useful for a number of applications.

<span class="mw-page-title-main">Laundry detergent</span> Type of detergent used for cleaning laundry

Laundry detergent is a type of detergent used for cleaning dirty laundry (clothes). Laundry detergent is manufactured in powder and liquid form.

<span class="mw-page-title-main">Linear alpha olefin</span>

Linear alpha olefins (LAO) or normal alpha olefins (NAO) are olefins or alkenes with a chemical formula CxH2x, distinguished from other mono-olefins with a similar molecular formula by linearity of the hydrocarbon chain and the position of the double bond at the primary or alpha position.

<span class="mw-page-title-main">Hydrogen fluoride</span> Chemical compound

Hydrogen fluoride (fluorane) is an inorganic compound with chemical formula HF. It is a very poisonous, colorless gas or liquid that dissolves in water to yield an aqueous solution termed hydrofluoric acid. It is the principal industrial source of fluorine, often in the form of hydrofluoric acid, and is an important feedstock in the preparation of many important compounds including pharmaceuticals and polymers, e.g. polytetrafluoroethylene (PTFE). HF is also widely used in the petrochemical industry as a component of superacids. Due to strong and extensive hydrogen bonding, it boils at near room temperature, much higher than other hydrogen halides.

The Shell higher olefin process (SHOP) is a chemical process for the production of linear alpha olefins via ethylene oligomerization and olefin metathesis invented and exploited by Royal Dutch Shell. The olefin products are converted to fatty aldehydes and then to fatty alcohols, which are precursors plasticizers and detergents. The annual global production of olefines through this method is over one million tonnes.

<span class="mw-page-title-main">SNOLAB</span> Canadian neutrino laboratory

SNOLAB is a Canadian underground science laboratory specializing in neutrino and dark matter physics. Located 2 km below the surface in Vale's Creighton nickel mine near Sudbury, Ontario, SNOLAB is an expansion of the existing facilities constructed for the original Sudbury Neutrino Observatory (SNO) solar neutrino experiment.

<span class="mw-page-title-main">Organosulfate</span> Organic compounds of the form R–O–SO₃ (charge –1)

In organosulfur chemistry, organosulfates are a class of organic compounds sharing a common functional group with the structure R−O−SO−3. The SO4 core is a sulfate group and the R group is any organic residue. All organosulfates are formally esters derived from alcohols and sulfuric acid although many are not prepared in this way. Many sulfate esters are used in detergents, and some are useful reagents. Alkyl sulfates consist of a hydrophobic hydrocarbon chain, a polar sulfate group and either a cation or amine to neutralize the sulfate group. Examples include: sodium lauryl sulfate and related potassium and ammonium salts.

<span class="mw-page-title-main">SNO+</span>

SNO+ is a physics experiment designed to search for neutrinoless double beta decay, with secondary measurements of proton–electron–proton (pep) solar neutrinos, geoneutrinos from radioactive decays in the Earth, and reactor neutrinos. It is under construction using the underground equipment already installed for the former Sudbury Neutrino Observatory (SNO) experiment at SNOLAB. It could also observe supernovae neutrinos if a supernova occurs in our galaxy.

Dodecylbenzene is an organic compound with the formula C
12
H
25
C
6
H
5
. Dodecylbenzene is a colorless liquid with a weak oily odor that floats on water.

<span class="mw-page-title-main">Alkylation unit</span>

An alkylation unit (alky) is one of the conversion processes used in petroleum refineries. It is used to convert isobutane and low-molecular-weight alkenes (primarily a mixture of propene and butene) into alkylate, a high octane gasoline component. The process occurs in the presence of an acid such as sulfuric acid (H2SO4) or hydrofluoric acid (HF) as catalyst. Depending on the acid used, the unit is called a sulfuric acid alkylation unit (SAAU) or hydrofluoric acid alkylation unit (HFAU). In short, the alky produces a high-quality gasoline blending stock by combining two shorter hydrocarbon molecules into one longer chain gasoline-range molecule by mixing isobutane with a light olefin such as propylene or butylene from the refinery's fluid catalytic cracking unit (FCCU) in the presence of an acid catalyst.

A geoneutrino is a neutrino or antineutrino emitted in decay of radionuclide naturally occurring in the Earth. Neutrinos, the lightest of the known subatomic particles, lack measurable electromagnetic properties and interact only via the weak nuclear force when ignoring gravity. Matter is virtually transparent to neutrinos and consequently they travel, unimpeded, at near light speed through the Earth from their point of emission. Collectively, geoneutrinos carry integrated information about the abundances of their radioactive sources inside the Earth. A major objective of the emerging field of neutrino geophysics involves extracting geologically useful information from geoneutrino measurements. Analysts from the Borexino collaboration have been able to get to 53 events of neutrinos originating from the interior of the Earth.

<span class="mw-page-title-main">Alkylbenzene</span> Family of organic compounds

An alkylbenzene is a chemical compound that contains a monocyclic aromatic ring attaching to one or more saturated hydrocarbon chains. Alkylbenzenes are derivatives of benzene, in which one or more hydrogen atoms are replaced by alkyl groups. The simplest member, toluene, has the hydrogen atom of the benzene ring replaced by a methyl group. The chemical formula of alkylbenzenes is CnH2n-6.

<span class="mw-page-title-main">Alkylbenzene sulfonate</span> Class of chemical compounds

Alkylbenzene sulfonates are a class of anionic surfactants, consisting of a hydrophilic sulfonate head-group and a hydrophobic alkylbenzene tail-group. Along with sodium laureth sulfate, they are one of the oldest and most widely used synthetic detergents and may be found in numerous personal-care products and household-care products . They were introduced in the 1930s in the form of branched alkylbenzene sulfonates (BAS). However following environmental concerns these were replaced with linear alkylbenzene sulfonates (LAS) during the 1960s. Since then production has increased significantly from about one million tons in 1980, to around 3.5 million tons in 2016, making them most produced anionic surfactant after soaps.

Wastewater comes out of the laundry process with additional energy (heat), lint, soil, dyes, finishing agents, and other chemicals from detergents. Some laundry wastewater goes directly into the environment, due to the flaws of water infrastructure. The majority goes to sewage treatment plants before flowing into the environment. Some chemicals remain in the water after treatment, which may contaminate the water system. Some have argued they can be toxic to wildlife, or can lead to eutrophication.

References

  1. Ashford's Dictionary of Industrial Chemicals (Third ed.). p. 3858.
  2. Kosswig, Kurt (2005). "Surfactants". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a25_747. ISBN   3527306730.
  3. 1 2 Linear alkylbenzene 07/08-S7 Report, ChemSystems, February 2009. Archived July 8, 2011, at the Wayback Machine
  4. "UOP Linear Alkylbenzene (LAB) Complex" (PDF). Archived from the original (PDF) on 2010-12-01. Retrieved 22 Dec 2009.
  5. Chen, M. (2005). "The SNO Liquid Scintillator Project". Nuclear Physics B - Proceedings Supplements. 154: 65–66. Bibcode:2005NuPhS.145...65C. doi:10.1016/j.nuclphysbps.2005.03.037.
  6. About the SNO+ Detector Archived 2018-12-04 at the Wayback Machine at the SNO+ web site
  7. Yeh, Minfang (September 2010). Water-based Liquid Scintillator (PDF). Advances in Neutrino Technology. Santa Fe. pp. 8–9.
  8. Learned, John G.; Dye, Stephen T.; Pakvasa, Sandip (2008). "Hanohano: A Deep Ocean Anti-Neutrino Detector for Unique Neutrino Physics and Geophysics Studies". arXiv: 0810.4975 [hep-ex].
  9. Lasserre, Thierry; Fechner, Maximilien; Mention, Guillaume; Reboulleau, Romain; Cribier, Michel; Letourneau, Alain; Lhuillier, David (2010). "SNIF: A Futuristic Neutrino Probe for Undeclared Nuclear Fission Reactors". arXiv: 1011.3850 [nucl-ex].
  10. European Council Regulations (EC) 1488/94 Archived 2007-07-10 at the Wayback Machine