The projection of a Lissajous knot onto any of the three coordinate planes is a Lissajous curve, and many of the properties of these knots are closely related to properties of Lissajous curves.
Replacing the cosine function in the parametrization by a triangle wave transforms every Lissajous knot isotopically into a billiard curve inside a cube, the simplest case of so-called billiard knots. Billiard knots can also be studied in other domains, for instance in a cylinder[2] or in a (flat) solid torus (Lissajous-toric knot).
Form
Because a knot cannot be self-intersecting, the three integers must be pairwise relatively prime, and none of the quantities
may be an integer multiple of pi. Moreover, by making a substitution of the form , one may assume that any of the three phase shifts , , is equal to zero.
Examples
Here are some examples of Lissajous knots,[3] all of which have :
There are infinitely many different Lissajous knots,[4] and other examples with 10 or fewer crossings include the 74 knot, the 815 knot, the 101 knot, the 1035 knot, the 1058 knot, and the composite knot 52*#52,[1] as well as the 916 knot, 1076 knot, the 1099 knot, the 10122 knot, the 10144 knot, the granny knot, and the composite knot 52#52.[5] In addition, it is known that every twist knot with Arf invariant zero is a Lissajous knot.[6]
Symmetry
Lissajous knots are highly symmetric, though the type of symmetry depends on whether or not the numbers , , and are all odd.
Odd case
If , , and are all odd, then the point reflection across the origin is a symmetry of the Lissajous knot which preserves the knot orientation.
In general, a knot that has an orientation-preserving point reflection symmetry is known as strongly positive amphicheiral.[7] This is a fairly rare property: only seven prime knots with twelve or fewer crossings are strongly positive amphicheiral (1099, 10123, 12a427, 12a1019, 12a1105, 12a1202, 12n706).[8] Since this is so rare, ′most′ prime Lissajous knots lie in the even case.
Even case
If one of the frequencies (say ) is even, then the 180° rotation around the x-axis is a symmetry of the Lissajous knot. In general, a knot that has a symmetry of this type is called 2-periodic, so every even Lissajous knot must be 2-periodic.
Consequences
A Lissajous knot with three factors: ,
The symmetry of a Lissajous knot puts severe constraints on the Alexander polynomial. In the odd case, the Alexander polynomial of the Lissajous knot must be a perfect square.[9] In the even case, the Alexander polynomial must be a perfect square modulo 2.[10] In addition, the Arf invariant of a Lissajous knot must be zero. It follows that:
1 2 Bogle, M. G. V.; Hearst, J. E.; Jones, V. F. R.; Stoilov, L. (1994). "Lissajous knots". Journal of Knot Theory and Its Ramifications. 3 (2): 121–140. doi:10.1142/S0218216594000095.
↑ Hoste, Jim; Zirbel, Laura (2006). "Lissajous knots and knots with Lissajous projections". arXiv:math.GT/0605632.
↑ Przytycki, Jozef H. (2004). "Symmetric knots and billiard knots". In Stasiak, A.; Katrich, V.; Kauffman, L. (eds.). Ideal Knots. Series on Knots and Everything. Vol.19. World Scientific. pp.374–414. arXiv:math/0405151. Bibcode:2004math......5151P.
↑ See Lamm, Christoph (2023). "Strongly positive amphicheiral knots with doubly symmetric diagrams". arXiv:2310.05106 [math.GT]. This article contains a complete list of prime strongly positive amphicheiral knots up to 16 crossings.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.