List of NASA robots

Last updated

NASA has made various robotic devices to aid, augment, or substitute for astronauts in order to do difficult or rote tasks such as repairs in dangerous environments (such as those with radiation or micrometeorite risks), routine procedures (video capture), etc.

Contents

Robonaut

Robonaut resting on a Segway HT. Robonaut.jpg
Robonaut resting on a Segway HT.

Robonaut is a joint DARPANASA project designed to create a humanoid robot which can function as an equivalent to humans during the 1970s and exploration. The large goal of the Robonaut project is to build a robot with dexterity that exceeds that of a suited astronaut. Currently there are four different robonauts with others in development, this variety of robonauts allows for the study of different stages of mobility and tasking for each situation. All four versions of this robot use various locomotion methods. Some versions of the robot use the Segway HT for locomotion . Robonaut uses telepresence and various levels of robotic autonomy. While not all human range of motion and sensitivity has been duplicated, the robot's hand has fourteen degrees of freedom and uses touch sensors at the tips of its fingers. One of the benefits of a humanoid robot is that it would not have to need a whole new set of tools.

There are currently two working robonauts, R1 and R2. R1 and R2 are both highly capable robots and are able to handle a wide range of tools and tasks. Robonaut 2 or R2 was flown to the space station as part of STS-133 mission and was the first humanoid robot in space. In the future legs will be added, and work is being completed to prepare Robotnaut to venture out into the vacuum of space. [1]

RASSOR

NASA's Regolith Advanced Surface Systems Operations Robot (RASSOR 2) NASA's Regolith Advanced Surface Systems Operations Robot (RASSOR).jpg
NASA's Regolith Advanced Surface Systems Operations Robot (RASSOR 2)

Pronounced "Razor", stands for Regolith Advanced Surface Systems Operations Robot. It is a lunar robot that will autonomously excavate soil when it is near completion, with its small tank like chassis with a Drum excavator and either side mounted on arms which can help the robot climb over obstacles that may be in its way. With these arms the robot can successfully right itself if it flips over and lift itself off the ground the clear its tracks of debris. With the drums positioned vertically RASSOR stands at about 2.5 ft. tall and expected to weigh about 100 pounds. With an average speed of about 20 centimeters per second (five times faster than the Curiosity rover's top speed on mars) the RASSOR will work 16 hours a day for many years (a minimum of 5 years as stated in the design requirements). [2] In its design NASA has moved away from its usual fragile and slow robot to design something more robust and hardy. The 2 excavating drums are designed to slowly remove soil into a hopper that can hold 40 pounds of material. The little robot will then drive to a processing plant where the lunar soil could be chemically broken down and converted into rocket fuel, water or breathing air for astronauts working on the moon and even possibly Mars. In-situ resource utilization of lunar soil for fuel could save the costs of launching a rocket as 90% of the rocket's weight consists of propellants.

The team working on the RASSOR has found some flaws with using tank tracks as they can become jammed with small pebbles and sand which could cause the tracks to fall off. The team is weighing their options and considering changing the material of the tracks or switching to wheels. The RASSOR 2 is already being designed and the prototype could be much closer to something NASA actually would launch. [3]

Spidernaut

Spidernaut is an arachnid inspired Extra Vehicular Robot (EVR) that is being designed by a NASA for construction, maintenance, and repair projects in future space missions that would be too difficult or too dangerous for a human. The Spidernaut's legs can move at three different points, one rotary joint in the hip and two more joints that are linear actuated. Each leg weighs 40 pounds but is capable of supporting 100 pounds and exerting upwards of 250 pounds of force. With the robots final weight of nearly 600 pounds evenly spread out across its eight legs Spidernaut will be able to climb across many surfaces including solar panels and the exterior of space craft without causing any damage. The feet of the robot are modular, meaning they can be removed and replaced for different situations that the robot may be placed in. The avionics and other electrical systems of the Spidernaut are located in what would be its thorax and are made up of brushless DC motor controllers and power and data distributors along with the power source. The robot is powered by a 72V/3600 Watt-hour lithium ion battery, which feeds a Power Conditioning and Distribution Module which down converts the 72V main bus to all the needed voltages for all the different devices on board. NASA has also begun experimenting with a "web" like cable deployment system that would allow the robot to climb and hang above structures that cannot support even light forces. [4] [5]

ATHLETE

ATHLETE climbs a hill ATHLETE robot climbing a hill.jpg
ATHLETE climbs a hill

ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer) is a six-limbed robotic lunar rover test-bed that is being developed in the Jet Propulsion Laboratory (JPL) at California Institute of Technology. ATHLETE is a test bed for various systems that could be used for lunar or Martian exploration. Each of the ATHLETE's six limbs have six degrees of freedom meaning they have six independently operated joints. For general traveling purposes the ATHLETE rolls on its six wheels but if it encounters more rugged and extreme terrain, it is able to lock each wheel into place and walk using its limbs. The first generation ATHLETE was developed in 2005 and consisted of 6, six-degree-of-freedom limbs mounted to the frame of the robot. With a standing height of 2 m (6.5 ft) and a hexagonal frame of 2.75 m (9 ft), the ATHLETE weighs about 850 kg (1875 lb) and can carry a load of up to 300 kg (660 lb). only two were ever constructed in 2005 and one is still operational today.

The Second Generation ATHLETE built in 2009. The robot was redeveloped and implemented as a corresponding team of two 3 limbed robots, known as Tri-ATHLETs. This advancement allows for better cargo handling and loading and unloading of cargo as the two robots can connect under the cargo dock and separate from each other and lower the cargo at its destination. The second generation ATHLETE stands at a little over 4 m (13 ft) and has a load capacity of 450 kg (990 lb). Each limb of the ATHLETE can be used as a universal manipulator. Each limb has a variety of quick deploy tool adapters that allow the robot to use a multitude of tools from its "tool belt". The tools use the same 1+ horsepower motors that the wheels use and allow the robot to perform many different tasks such as drilling, clamping, digging and many other tool functions. [6] [7]

Dextre

Dextre is a two armed robot, or telemanipulator, which is part of the Mobile Servicing System on the International Space Station (ISS). It replaces some activities otherwise requiring spacewalks. It was launched March 11, 2008 on mission STS-123.

SPHERES

Spheres stands for Synchronized Position Hold, Engage, Reorient, Experimental Satellites. These satellites are about the size of a bowling ball and are in the experimental phase at NASA. Each Sphere is self-contained with its own power, propulsion, computers, and navigation equipment. The Spheres are designed to be used inside a space station to test how well the spheres can follow a set of detailed flight instructions. While inside a space station three spheres will be given a set of instructions such as an autonomous rendezvous and docking maneuver. The results from the sphere testing will be applied to satellite servicing, vehicle assembly, and future space craft that will be designed to fly in a formation. [8]

Curiosity rover

The Mars rover Curiosity is a mobile laboratory that was launched from Cape Canaveral in 2011. The Curiosity landed on Mars surface August 6, 2012. This was the largest rover NASA has put on Mars, being twice as long and five times as heavy as its processors. Despite the extra size the Curiosity took many design elements from the previous generation of Mars rovers such as six wheel drive, rocker-bogie suspension, and cameras mounted to the mast of the rover to help the mission's team direct the rover. However unlike the previous generation the Curiosity contains an entire inboard laboratory for analyzing the soil and rocks on Mars. NASA engineered the Curiosity to be capable of rolling over obstacles up to 65 centimeters high and traverse up to about 200 meters per day on Martian terrain. Curiosity got its electrical power from a Radioisotope thermoelectric generator. [9]

Pioneer

Pioneer is a robot developed in response to the Chernobyl disaster to clear rubble, make maps, and acquire samples inside the Chernobyl Unit 4 reactor building. [10] The Pioneer project is a collaboration of many groups inside and outside NASA. [11] The concrete sampling drill on the Pioneer is designed to estimate the material strength of the floors and walls while it cuts out samples for later structural analysis. [12] Ownership was transferred to Ukraine in 1999 and Ukrainian experts began learning to use it. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Uncrewed spacecraft</span> Spacecraft without people on board

Robotic spacecraft or uncrewed spacecraft are spacecraft without people on board. Uncrewed spacecraft may have varying levels of autonomy from human input; they may be remote controlled, remote guided or autonomous: they have a pre-programmed list of operations, which they will execute unless otherwise instructed. A robotic spacecraft for scientific measurements is often called a space probe or space observatory.

<span class="mw-page-title-main">Lander (spacecraft)</span> Type of spacecraft

A lander is a spacecraft that descends towards, then comes to rest on, the surface of an astronomical body. In contrast to an impact probe, which makes a hard landing that damages or destroys the probe upon reaching the surface, a lander makes a soft landing after which the probe remains functional.

<span class="mw-page-title-main">Mars Exploration Rover</span> NASA mission to explore Mars via two rovers (Spirit and Opportunity); launched in 2003

NASA's Mars Exploration Rover (MER) mission was a robotic space mission involving two Mars rovers, Spirit and Opportunity, exploring the planet Mars. It began in 2003 with the launch of the two rovers to explore the Martian surface and geology; both landed on Mars at separate locations in January 2004. Both rovers far outlived their planned missions of 90 Martian solar days: MER-A Spirit was active until March 22, 2010, while MER-B Opportunity was active until June 10, 2018.

<span class="mw-page-title-main">Telerobotics</span>

Telerobotics is the area of robotics concerned with the control of semi-autonomous robots from a distance, chiefly using television, wireless networks or tethered connections. It is a combination of two major subfields, which are teleoperation and telepresence.

<span class="mw-page-title-main">Mars Science Laboratory</span> Robotic mission that deployed the Curiosity rover to Mars in 2012

Mars Science Laboratory (MSL) is a robotic space probe mission to Mars launched by NASA on November 26, 2011, which successfully landed Curiosity, a Mars rover, in Gale Crater on August 6, 2012. The overall objectives include investigating Mars' habitability, studying its climate and geology, and collecting data for a human mission to Mars. The rover carries a variety of scientific instruments designed by an international team.

<span class="mw-page-title-main">Robonaut</span> Humanoid robot

A robonaut is a humanoid robot, part of a development project conducted by the Dexterous Robotics Laboratory at NASA's Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Robonaut differs from other current space-faring robots in that, while most current space robotic systems are designed to move large objects, Robonaut's tasks require more dexterity.

Maestro (software) was a free program released by NASA to allow users to view photos and daily progress of the Spirit and Opportunity rovers. It served as an activity planner for Mars that utilized a combination of 2D and 3D visuals to track the movement and missions of the Spirit and Opportunity rovers in 2004.

<span class="mw-page-title-main">Rocker-bogie</span>

The rocker-bogie system is the suspension arrangement developed in 1988 for use in NASA's Mars rover Sojourner, and which has since become NASA's favored design for rovers. It has been used in the 2003 Mars Exploration Rover mission robots Spirit and Opportunity, on the 2012 Mars Science Laboratory (MSL) mission's rover Curiosity, and the Mars 2020 rover Perseverance.

<span class="mw-page-title-main">Rover (space exploration)</span> Space exploration vehicle designed to move across the surface of a planet or other celestial body

A rover is a planetary surface exploration device designed to move across the solid surface on a planet or other planetary mass celestial bodies. Some rovers have been designed as land vehicles to transport members of a human spaceflight crew; others have been partially or fully autonomous robots. Rovers are typically created to land on another planet via a lander-style spacecraft, tasked to collect information about the terrain, and to take crust samples such as dust, soil, rocks, and even liquids. They are essential tools in space exploration.

<span class="mw-page-title-main">Robotic arm</span> Type of mechanical arm with similar functions to a human arm

A robotic arm is a type of mechanical arm, usually programmable, with similar functions to a human arm; the arm may be the sum total of the mechanism or may be part of a more complex robot. The links of such a manipulator are connected by joints allowing either rotational motion or translational (linear) displacement. The links of the manipulator can be considered to form a kinematic chain. The terminus of the kinematic chain of the manipulator is called the end effector and it is analogous to the human hand. However, the term "robotic hand" as a synonym of the robotic arm is often proscribed.

<span class="mw-page-title-main">Desert Research and Technology Studies</span> Field trials of technologies for manned planetary exploration

NASA's Desert Research and Technology Studies is a group of teams which perform an annual series of field trials seeking to demonstrate and test candidate technologies and systems for human exploration of the surface of the Moon, Mars, or other rocky bodies.

<span class="mw-page-title-main">ATHLETE</span>

ATHLETE is a six-legged robotic lunar rover under development by the Jet Propulsion Laboratory (JPL). ATHLETE is a testbed for systems, and is designed for use on the Moon.

The embedded computer systems onboard Mars rovers are designed to be robust against withstand high radiation levels and large temperature changes in space. For this reason their computational resources are more yet limited compared to systems commonly used on Earth.

The NASA RealWorld-InWorld Engineering Design Challenge is an educational activity designed for students in grades 7–12. It aims to develop skills relevant to careers in science, technology, engineering, and math (STEM) fields. The challenge consists of two phases: project-based learning and team competitions. Students, supported by teachers and coaches, engage in solving engineering problems inspired by NASA and collaborate with university students and engineering mentors in a virtual reality environment. The focus of the challenge revolves around real-world issues related to the James Webb Space Telescope and the Robonaut 2 humanoid robot. By working on these problems, students contribute to finding practical solutions that align with ongoing research efforts. The RealWorld-InWorld initiative is a collaborative educational program between NASA, the National Institute of Aerospace (NIA), and USA TODAY Education. It builds upon the Sight/Insight design challenge developed by NASA and USA TODAY Education, as well as the Virtual Exploration Sustainability Challenge (VESC) developed by NIA and NASA. These initiatives share a common foundation of using NASA themes and content to engage and educate students in grades 7–12.

<span class="mw-page-title-main">Lunar rover</span> Vehicle that travels on the moons surface

A lunar rover or Moon rover is a space exploration vehicle designed to move across the surface of the Moon. The Apollo Program's Lunar Roving Vehicle was driven on the Moon by members of three American crews, Apollo 15, 16, and 17. Other rovers have been partially or fully autonomous robots, such as the Soviet Union's Lunokhods and the Chinese Yutus. Three countries have had operating rovers on the Moon: the Soviet Union, the United States and China. An Indian mission failed while Japan and Greece currently have planned missions.

<i>Curiosity</i> (rover) NASA robotic rover exploring the crater Gale on Mars

Curiosity is a car-sized Mars rover designed to explore the Gale crater on Mars as part of NASA's Mars Science Laboratory (MSL) mission. Curiosity was launched from Cape Canaveral (CCAFS) on November 26, 2011, at 15:02:00 UTC and landed on Aeolis Palus inside Gale crater on Mars on August 6, 2012, 05:17:57 UTC. The Bradbury Landing site was less than 2.4 km (1.5 mi) from the center of the rover's touchdown target after a 560 million km (350 million mi) journey.

<span class="mw-page-title-main">Crewed Mars rover</span> Mars rovers transporting people

Crewed Mars rovers are Mars rovers for transporting people on the planet Mars, and have been conceptualized as part of human missions to that planet.

<span class="mw-page-title-main">Nic Radford</span>

Nicolaus Adam Radford known as Nic Radford is an American engineer, roboticist, inventor, and entrepreneur raising over $250mm in funding for his companies. He is the president and CEO of Nauticus Robotics, Inc. (NSADAQ:KITT) a robotics firm he founded. He also founded Jacobi Motors, his company spun out of HMI to commercialize his variable flux motor research from graduate school. He also started Rad Capital Ventures to invest in the trading of electricity. Prior to forming HMI, he spent 14 years at Lyndon B. Johnson Space Center's Dexterous Robotics Laboratory at NASA in Houston, Texas. Radford was the principal investigator tasked with leading the development of Valkyrie for participation in the 2013 DARPA Robotics Challenge (DRC) and NASA's future Mars robotics missions.

<span class="mw-page-title-main">Swati Mohan</span> American aerospace engineer

Swati Mohan is an American aerospace engineer and was the Guidance and Controls Operations Lead on the NASA Mars 2020 mission.

References

  1. Joe Bibby. (n.d.). Retrieved from http://robonaut.jsc.nasa.gov/default.asp
  2. Mueller, R. P., Cox, R. E., Ebert, T., Smith, J. D., Schuler, J. M., & Nick, A. J. (2013, March). Regolith advanced surface systems operations robot (RASSOR). In 2013 IEEE Aerospace Conference (pp. 1-12). IEEE. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6497341
  3. Siceloff, S. (2013, Jan 25). Engineers build hard-working mining robot. Retrieved from http://www.nasa.gov/topics/technology/features/RASSOR.html
  4. Bibby Joe. NASA, (2008). Spidernaut: Overcoming new challenges. Retrieved from website: http://spidernaut.jsc.nasa.gov/dev.asp
  5. Ackerman, Even. (2011). Behold your doom: Robospidernaut. Retrieved from website: https://spectrum.ieee.org/automaton/robotics/industrial-robots/behold-your-doom-robospidernaut
  6. Richard, V. the athlete rover [Web log message]. Retrieved from
  7. Alder Bill. NASA, (2009). All-terrain hex-limbed extra-terrestrial explorer. Retrieved from website:
  8. Miller, D. (2013, April 25). Synchronized position hold, engage, reorient, experimental satellites (spheres). NASA
  9. Tony Greicius. (n.d.). Retrieved from http://www.nasa.gov/mission_pages/msl/index.html
  10. NASA. "Robot Systems".
  11. "Pioneer project".
  12. "Pioneer: Technical Approach"
  13. Lisa Nocks (2007). The Robot: The Life Story of a Technology. Greenwood Publishing Group. p. 107]. ISBN   978-0-313-33168-8.