List of forcing notions

Last updated

In mathematics, forcing is a method of constructing new models M[G] of set theory by adding a generic subset G of a poset P to a model M. The poset P used will determine what statements hold in the new universe (the 'extension'); to force a statement of interest thus requires construction of a suitable P. This article lists some of the posets P that have been used in this construction.

Contents

Notation

Definitions

Amoeba forcing

Amoeba forcing is forcing with the amoeba order, and adds a measure 1 set of random reals.

Cohen forcing

In Cohen forcing (named after Paul Cohen) P is the set of functions from a finite subset of ω2× ω to {0,1} and p < q if pq.

This poset satisfies the countable chain condition. Forcing with this poset adds ω2 distinct reals to the model; this was the poset used by Cohen in his original proof of the independence of the continuum hypothesis.

More generally, one can replace ω2 by any cardinal κ so construct a model where the continuum has size at least κ. Here, there is no restriction. If κ has cofinality ω, the reals end up bigger than κ.

Grigorieff forcing

Grigorieff forcing (after Serge Grigorieff) destroys a free ultrafilter on ω.

Hechler forcing

Hechler forcing (after Stephen Herman Hechler) is used to show that Martin's axiom implies that every family of less than c functions from ω to ω is eventually dominated by some such function.

P is the set of pairs (s, E) where s is a finite sequence of natural numbers (considered as functions from a finite ordinal to ω) and E is a finite subset of some fixed set G of functions from ω to ω. The element (s, E) is stronger than (t, F) if t is contained in s, F is contained in E, and if k is in the domain of s but not of t then s(k) > h(k) for all h in F.

Jockusch–Soare forcing

Forcing with classes was invented by Robert Soare and Carl Jockusch to prove, among other results, the low basis theorem. Here P is the set of nonempty subsets of (meaning the sets of paths through infinite, computable subtrees of ), ordered by inclusion.

Iterated forcing

Iterated forcing with finite supports was introduced by Solovay and Tennenbaum to show the consistency of Suslin's hypothesis. Easton introduced another type of iterated forcing to determine the possible values of the continuum function at regular cardinals. Iterated forcing with countable support was investigated by Laver in his proof of the consistency of Borel's conjecture, Baumgartner, who introduced Axiom A forcing, and Shelah, who introduced proper forcing. Revised countable support iteration was introduced by Shelah to handle semi-proper forcings, such as Prikry forcing, and generalizations, notably including Namba forcing.

Laver forcing

Laver forcing was used by Laver to show that Borel's conjecture, which says that all strong measure zero sets are countable, is consistent with ZFC. (Borel's conjecture is not consistent with the continuum hypothesis.)

A Laver treep is a subset of the finite sequences of natural numbers such that

If G is generic for (P, ≤), then the real {s(p) : p ∈ G}, called a Laver-real, uniquely determines G.

Laver forcing satisfies the Laver property.

Levy collapsing

These posets will collapse various cardinals, in other words force them to be equal in size to smaller cardinals.

Levy collapsing is named for Azriel Levy.

Magidor forcing

Amongst many forcing notions developed by Magidor, one of the best known is a generalization of Prikry forcing used to change the cofinality of a cardinal to a given smaller regular cardinal.

Mathias forcing

(t, B) is stronger than (s, A)((t, B) < (s, A)) if s is an initial segment of t, B is a subset of A, and t is contained in sA.

Mathias forcing is named for Adrian Mathias.

Namba forcing

Namba forcing (after Kanji Namba) is used to change the cofinality of ω2 to ω without collapsing ω1.

Namba' forcing is the subset of P such that there is a node below which the ordering is linear and above which each node has immediate successors.

Magidor and Shelah proved that if CH holds then a generic object of Namba forcing does not exist in the generic extension by Namba', and vice versa. [1] [2]

Prikry forcing

In Prikry forcing (after Karel Prikrý) P is the set of pairs (s, A) where s is a finite subset of a fixed measurable cardinal κ, and A is an element of a fixed normal measure D on κ. A condition (s, A) is stronger than (t, B) if t is an initial segment of s, A is contained in B, and s is contained in tB. This forcing notion can be used to change to cofinality of κ while preserving all cardinals.

Product forcing

Taking a product of forcing conditions is a way of simultaneously forcing all the conditions.

Radin forcing

Radin forcing (after Lon Berk Radin), a technically involved generalization of Magidor forcing, adds a closed, unbounded subset to some regular cardinal λ.

If λ is a sufficiently large cardinal, then the forcing keeps λ regular, measurable, supercompact, etc.

Random forcing

Sacks forcing

Sacks forcing has the Sacks property.

Shooting a fast club

For S a stationary subset of we set is a closed sequence from S and C is a closed unbounded subset of , ordered by iff end-extends and and . In , we have that is a closed unbounded subset of S almost contained in each club set in V. is preserved. This method was introduced by Ronald Jensen in order to show the consistency of the continuum hypothesis and the Suslin hypothesis.

Shooting a club with countable conditions

For S a stationary subset of we set P equal to the set of closed countable sequences from S. In , we have that is a closed unbounded subset of S and is preserved, and if CH holds then all cardinals are preserved.

Shooting a club with finite conditions

For S a stationary subset of we set P equal to the set of finite sets of pairs of countable ordinals, such that if and then and , and whenever and are distinct elements of p then either or . P is ordered by reverse inclusion. In , we have that is a closed unbounded subset of S and all cardinals are preserved.

Silver forcing

Silver forcing (after Jack Howard Silver) is the set of all those partial functions from the natural numbers into {0, 1} whose domain is coinfinite; or equivalently the set of all pairs (A, p), where A is a subset of the natural numbers with infinite complement, and p is a function from A into a fixed 2-element set. A condition q is stronger than a condition p if q extends p.

Silver forcing satisfies Fusion, the Sacks property, and is minimal with respect to reals (but not minimal).

Vopěnka forcing

Vopěnka forcing (after Petr Vopěnka) is used to generically add a set of ordinals to . Define first as the set of all non-empty subsets of the power set of , where , ordered by inclusion: iff . Each condition can be represented by a tuple where , for all . The translation between and its least representation is , and hence is isomorphic to a poset (the conditions being the minimal representations of elements of ). This poset is the Vopenka forcing for subsets of . Defining as the set of all representations for elements such that , then is -generic and .

Related Research Articles

In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .

In mathematics, a Mahlo cardinal is a certain kind of large cardinal number. Mahlo cardinals were first described by Paul Mahlo. As with all large cardinals, none of these varieties of Mahlo cardinals can be proven to exist by ZFC.

In the mathematical discipline of set theory, 0# is the set of true formulae about indiscernibles and order-indiscernibles in the Gödel constructible universe. It is often encoded as a subset of the natural numbers, or as a subset of the hereditarily finite sets, or as a real number. Its existence is unprovable in ZFC, the standard form of axiomatic set theory, but follows from a suitable large cardinal axiom. It was first introduced as a set of formulae in Silver's 1966 thesis, later published as Silver (1971), where it was denoted by Σ, and rediscovered by Solovay, who considered it as a subset of the natural numbers and introduced the notation O#.

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

<span class="mw-page-title-main">Aleph number</span> Infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph.

In mathematics, a Ramsey cardinal is a certain kind of large cardinal number introduced by Erdős & Hajnal (1962) and named after Frank P. Ramsey, whose theorem establishes that ω enjoys a certain property that Ramsey cardinals generalize to the uncountable case.

In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.

In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers, conventionally written , where is the Hebrew letter beth. The beth numbers are related to the aleph numbers, but unless the generalized continuum hypothesis is true, there are numbers indexed by that are not indexed by .

In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal that is closed under the order topology, and is unbounded relative to the limit ordinal. The name club is a contraction of "closed and unbounded".

In mathematics, specifically set theory and model theory, a stationary set is a set that is not too small in the sense that it intersects all club sets and is analogous to a set of non-zero measure in measure theory. There are at least three closely related notions of stationary set, depending on whether one is looking at subsets of an ordinal, or subsets of something of given cardinality, or a powerset.

In mathematics, particularly in set theory, if is a regular uncountable cardinal then the filter of all sets containing a club subset of is a -complete filter closed under diagonal intersection called the club filter.

Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness".

In the mathematical field of set theory, the proper forcing axiom (PFA) is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings.

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In recursion theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory.

<span class="mw-page-title-main">Ordinal number</span> Generalization of "n-th" to infinite cases

In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals aimed to extend enumeration to infinite sets.

This is a glossary of set theory.

This article summarizes several identities in exterior calculus.

References

  1. Shelah, S., Proper and Improper Forcing (Claim XI.4.2), Springer, 1998
  2. Schlindwein, C., Shelah's work on non-semiproper iterations, I, Archive for Mathematical Logic, vol. 47, no. 6, pp. 579 -- 606 (2008)