Richard Joseph Laver (October 20, 1942 – September 19, 2012) was an American mathematician, working in set theory.
Laver received his PhD at the University of California, Berkeley in 1969, under the supervision of Ralph McKenzie, [1] with a thesis on Order Types and Well-Quasi-Orderings. The largest part of his career he spent as Professor and later Emeritus Professor at the University of Colorado at Boulder.
Richard Laver died in Boulder, CO, on September 19, 2012 after a long illness. [2]
Among Laver's notable achievements some are the following.
In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.
In mathematics, Suslin's problem is a question about totally ordered sets posed by Mikhail Yakovlevich Suslin and published posthumously. It has been shown to be independent of the standard axiomatic system of set theory known as ZFC; Solovay & Tennenbaum (1971) showed that the statement can neither be proven nor disproven from those axioms, assuming ZF is consistent.
In mathematics, extendible cardinals are large cardinals introduced by Reinhardt (1974), who was partly motivated by reflection principles. Intuitively, such a cardinal represents a point beyond which initial pieces of the universe of sets start to look similar, in the sense that each is elementarily embeddable into a later one.
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large". The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more".
In model theory, a branch of mathematical logic, the spectrum of a theory is given by the number of isomorphism classes of models in various cardinalities. More precisely, for any complete theory T in a language we write I(T, κ) for the number of models of T (up to isomorphism) of cardinality κ. The spectrum problem is to describe the possible behaviors of I(T, κ) as a function of κ. It has been almost completely solved for the case of a countable theory T.
In the mathematical field of set theory, the proper forcing axiom (PFA) is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings.
In mathematics, the congruence lattice problem asks whether every algebraic distributive lattice is isomorphic to the congruence lattice of some other lattice. The problem was posed by Robert P. Dilworth, and for many years it was one of the most famous and long-standing open problems in lattice theory; it had a deep impact on the development of lattice theory itself. The conjecture that every distributive lattice is a congruence lattice is true for all distributive lattices with at most ℵ1 compact elements, but F. Wehrung provided a counterexample for distributive lattices with ℵ2 compact elements using a construction based on Kuratowski's free set theorem.
In the mathematical field of model theory, a theory is called stable if it satisfies certain combinatorial restrictions on its complexity. Stable theories are rooted in the proof of Morley's categoricity theorem and were extensively studied as part of Saharon Shelah's classification theory, which showed a dichotomy that either the models of a theory admit a nice classification or the models are too numerous to have any hope of a reasonable classification. A first step of this program was showing that if a theory is not stable then its models are too numerous to classify.
In mathematical order theory, a scattered order is a linear order that contains no densely ordered subset with more than one element.
In set theory, a branch of mathematical logic, Martin's maximum, introduced by Foreman, Magidor & Shelah (1988) and named after Donald Martin, is a generalization of the proper forcing axiom, itself a generalization of Martin's axiom. It represents the broadest class of forcings for which a forcing axiom is consistent.
In set theory, a Laver function is a function connected with supercompact cardinals.
András Hajnal was a professor of mathematics at Rutgers University and a member of the Hungarian Academy of Sciences known for his work in set theory and combinatorics.
In the mathematical field of set theory, the Solovay model is a model constructed by Robert M. Solovay in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue measurable. The construction relies on the existence of an inaccessible cardinal.
In order theory a better-quasi-ordering or bqo is a quasi-ordering that does not admit a certain type of bad array. Every better-quasi-ordering is a well-quasi-ordering.
This is a glossary of terms and definitions related to the topic of set theory.
Laver's theorem, in order theory, states that order embeddability of countable total orders is a well-quasi-ordering. That is, for every infinite sequence of totally-ordered countable sets, there exists an order embedding from an earlier member of the sequence to a later member. This result was previously known as Fraïssé's conjecture, after Roland Fraïssé, who conjectured it in 1948; Richard Laver proved the conjecture in 1971. More generally, Laver proved the same result for order embeddings of countable unions of scattered orders.