List of honey bee pheromones

Last updated

The pheromones of the honey bee are mixtures of chemical substances released by individual bees into the hive or environment that cause changes in the physiology and behaviour of other bees.

Contents

Introduction

Honey bees ( Apis mellifera ) have one of the most complex pheromonal communication systems found in nature, possessing 15 known glands that produce an array of compounds. [1] [2] These chemical messengers secreted by a queen, drone, worker bee or laying worker bee to elicit a response in other bees. The chemical messages are received by the bee's antenna and other body parts. They are produced as a volatile or non-volatile liquid and transmitted by direct contact as a liquid or vapor.

Honey bee pheromones can be grouped into releaser pheromones which temporarily affect the recipient's behavior, and primer pheromones which have a long-term effect on the physiology of the recipient. Releaser pheromones trigger an almost immediate behavioral response from the receiving bee. Under certain conditions a pheromone can act as both a releaser and primer pheromone.

The pheromones may either be single chemicals or a complex mixture of numerous chemicals in different percentages. [3] [4]

Types of honey bee pheromones

Alarm pheromone

Two main alarm pheromones have been identified in honeybee workers. One is released by the Koschevnikov gland, near the sting shaft, and consists of more than 40 chemical compounds, including isopentyl acetate (IPA), butyl acetate, 1-hexanol, n-butanol, 1-octanol, hexyl acetate, octyl acetate, n-pentyl acetate and 2-nonanol. These chemical compounds have low molecular weights, are highly volatile, and appear to be the least specific of all pheromones. Alarm pheromones are released when a bee stings another animal, and attract other bees to the location and causes the other bees to behave defensively, i.e. sting or charge. The alarm pheromone emitted when a bee stings another animal smells like bananas. [5] Smoke can mask the bees' alarm pheromone.

The other alarm pheromone is released by the mandibular glands and consists of 2-heptanone, which is also a highly volatile substance. This compound has a repellent effect and it was proposed that it is used to deter potential enemies and robber bees. The amounts of 2-heptanone increase with the age of bees and becomes higher in the case of foragers. It was therefore suggested that 2-heptanone is used by foragers to scent-mark recently visited and depleted foraging locations, which indeed are avoided by foraging bees. However, this has recently been proven false. In a new discovery, it was determined that bees actually use 2-heptanone as an anesthetic and to paralyze intruders. After the intruders are paralyzed, the bees remove them from the hive. [6]

Brood recognition pheromone

Another pheromone is responsible for preventing worker bees from bearing offspring in a colony that still has developing young. Both larvae and pupae emit a "brood recognition" pheromone. This inhibits ovarian development in worker bees and helps nurse bees distinguish worker larvae from drone larvae and pupae. This pheromone is a ten-component blend of fatty-acid esters, which also modulates adult caste ratios and foraging ontogeny dependent on its concentration. The components of brood pheromone have been shown to vary with the age of the developing bee. An artificial brood pheromone was invented by Yves Le Conte, Leam Sreng, Jérome Trouiller, and Serge Henri Poitou and patented in 1996. [7]

Drone pheromone

Drone Mandibular Pheromone attracts other flying drones to suitable sites for mating with virgin queens. [8]

Dufour's gland pheromone

The Dufour's gland (named after the French naturalist Léon Jean Marie Dufour) opens into the dorsal vaginal wall. Dufour’s gland and its secretion have been somewhat of a mystery. The gland secretes its alkaline products into the vaginal cavity, and it has been assumed to be deposited on the eggs as they are laid. Indeed, Dufour’s secretions allow worker bees to distinguish between eggs laid by the queen, which are attractive, and those laid by workers. The complex of as many as 24 chemicals differs between workers in "queenright" colonies and workers of queenless colonies. In the latter, the workers’ Dufour secretions are similar to those of a healthy queen. The secretions of workers in queenright colonies are long-chain alkanes with odd numbers of carbon atoms, but those of egg-laying queens and egg-laying workers of queenless colonies also include long chain esters. [9]

Egg marking pheromone

This pheromone, similar to that described above, helps nurse bees distinguish between eggs laid by the queen bee and eggs laid by a laying worker.

Footprint pheromone

This pheromone is left by bees when they walk and is useful in enhancing Nasonov pheromones in searching for nectar.

In the queen, it is an oily secretion of the queen's tarsal glands that is deposited on the comb as she walks across it. This inhibits queen cell construction (thereby inhibiting swarming), and its production diminishes as the queen ages.

Forager pheromone

Ethyl oleate is released by older forager bees to slow the maturing of nurse bees. [10] This primer pheromone acts as a distributed regulator to keep the ratio of nurse bees to forager bees in the balance that is most beneficial to the hive.

Nasonov pheromone

Nasonov pheromone is emitted by the worker bees and used for orientation and recruitment. Nasonov pheromone includes a number of terpenoids including geraniol, nerolic acid, citral and geranic acid.

Other pheromones

Other pheromones produced by most honey bees include rectal gland pheromone, tarsal pheromone, wax gland and comb pheromone, and tergite gland pheromone. [ citation needed ]

Types of queen honey bee pheromones

Queen mandibular pheromone

Queen mandibular pheromone (QMP), emitted by the queen, is one of the most important sets of pheromones in the bee hive. It affects social behavior, maintenance of the hive, swarming, mating behavior, and inhibition of ovary development in worker bees. [11] The effects can be short term or long term or both. Some of the chemicals found in QMP are carboxylic acids and aromatic compounds. The following compounds have been shown to be important in retinue attraction of workers to their queen and other effects. [12] [13]

Work on synthetic pheromones was done by Keith N. Slessor, Lori-ann Kaminski, Gaylord G. S. King, John H. Borden, and Mark L. Winston; their work was patented in 1991. Synthetic queen mandibular pheromone (QMP) is a mixture of five components: 9-ODA, (−)-9-HDA, (+)-9-HDA, HOB and HVA in a ratio of 118:50:22:10:1.

Queen retinue pheromone

The following compounds have also been identified, [14] of which only coniferyl alcohol is found in the mandibular glands. The combination of the 5 QMP compounds and the 4 compounds below is called the queen retinue pheromone (QRP). These nine compounds are important for the retinue attraction of worker bees around their queen.

Other

The queen also contains an abundance of various methyl and ethyl fatty acid esters, [19] very similar to the brood recognition pheromone described above. They are likely to have pheromonal functions like those found for the brood recognition pheromone.

References listed alphabetically by author

Notes

  1. Free, John B., Pheromones of social bees. Ithaca, N.Y.: Comstock, 1987.
  2. Blum, M.S. 1992. Honey bee pheromones in The Hive and the Honey Bee, revised edition (Dadant and Sons: Hamilton, Illinois), pages 385–389.
  3. For Imrie, George Georg Imrie's, Pink Pages Nov. 1999
  4. Katzav-Gozansky Tamar (2002). "Review" (PDF). Apidologie. 33: 525–537. doi: 10.1051/apido:2002035 .
  5. "Analysis of Honeybee Aggression".
  6. "Honeybee Bites Can Act As Anesthetics". Medical News Today. 17 Oct 2012.
  7. "US Patent 5695383 A". google.com. Retrieved 4 November 2016.
  8. Lensky, Y.; Cassier, P.; Finkel, A.; Delorme-Joulie, C.; Levinsohn, M. (1985-04-01). "The fine structure of the tarsal glands of the honeybee Apis mellifera L. (Hymenoptera)". Cell and Tissue Research. 240 (1): 153–158. doi:10.1007/BF00217569. ISSN   1432-0878. S2CID   45073312.
  9. Katzav-Gozansky T., Soroker V., Hefetz A. (2002). "Honeybees Dufour's gland - idiosyncrasy of a new queen signal". Apidologie. 33 (6): 525–537. doi: 10.1051/apido:2002035 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. Leoncini I., Le Conte Y., Costagliola G., Plettner E., Toth A. L., Wang M., Huang Z., Bécard J.-M., Crauser D., Slessor K. N., Robinson G. E. (2004). "Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees". Proceedings of the National Academy of Sciences. 101 (50): 17559–17564. doi: 10.1073/pnas.0407652101 . PMC   536028 . PMID   15572455.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Butler, C.G., Callow, R.K., Johnston, N.C. (1962). "The isolation and synthesis of queen substance 9-oxodec-trans-2-enoic acid, a honeybee pheromone". Proceedings of the Royal Society B. 155 (960): 417–432. Bibcode:1962RSPSB.155..417B. doi:10.1098/rspb.1962.0009. JSTOR   90262. S2CID   86183254.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Slessor, Keith N., Kaminski, Lori-Ann, King, G. G. S., Borden, John H., Winston, Mark L. (1988). "Semiochemical basis of the retinue response to queen honey bees". Nature. 332 (6162): 354–356. Bibcode:1988Natur.332..354S. doi:10.1038/332354a0. S2CID   4362366.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. https://www.ncbi.nlm.nih.gov/books/NBK200983/
  14. Keeling, C. I., Slessor, K. N., Higo, H. A. and Winston, M. L. (2003). "New components of the honey bee (Apis mellifera L.) queen retinue pheromone". Proceedings of the National Academy of Sciences. 100 (8): 4486–4491. Bibcode:2003PNAS..100.4486K. doi: 10.1073/pnas.0836984100 . PMC   153582 . PMID   12676987.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. methyl (Z)-octadec-9-enoate
  16. (E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-en-1-ol
  17. hexadecan-1-ol
  18. (Z9,Z12,Z15)-octadeca-9,12,15-trienoic acid
  19. Keeling, C. I. & Slessor, K. N. (2005). "A scientific note on the aliphatic esters in queen honey bees" (PDF). Apidologie. 36 (4): 559–560. doi: 10.1051/apido:2005044 .

Related Research Articles

<span class="mw-page-title-main">Honey bee</span> Colonial flying insect of genus Apis

A honey bee is a eusocial flying insect within the genus Apis of the bee clade, all native to mainland Afro-Eurasia. After bees spread naturally throughout Africa and Eurasia, humans became responsible for the current cosmopolitan distribution of honey bees, introducing multiple subspecies into South America, North America, and Australia.

<span class="mw-page-title-main">Bee learning and communication</span> Cognitive and sensory processes in bees

Bee learning and communication includes cognitive and sensory processes in all kinds of bees, that is the insects in the seven families making up the clade Anthophila. Some species have been studied more extensively than others, in particular Apis mellifera, or European honey bee. Color learning has also been studied in bumblebees.

<span class="mw-page-title-main">Queen bee</span> Egg-laying individual in a bee colony

A queen bee is typically an adult, mated female (gyne) that lives in a colony or hive of honey bees. With fully developed reproductive organs, the queen is usually the mother of most, if not all, of the bees in the beehive. Queens are developed from larvae selected by worker bees and specially fed in order to become sexually mature. There is normally only one adult, mated queen in a hive, in which case the bees will usually follow and fiercely protect her.

<span class="mw-page-title-main">Worker bee</span> Caste of honey bee

A worker bee is any female bee that lacks the reproductive capacity of the colony's queen bee and carries out the majority of tasks needed for the functioning of the hive. While worker bees are present in all eusocial bee species, the term is rarely used for bees other than honey bees, particularly the European honey bee. Worker bees of this variety are responsible for approximately 80% of the world's crop pollination services.

<span class="mw-page-title-main">Bee pollen</span> Ball of pollen gathered by worker honeybees

Bee pollen, also known as bee bread and ambrosia, is a ball or pellet of field-gathered flower pollen packed by worker honeybees, and used as the primary food source for the hive. It consists of simple sugars, protein, minerals and vitamins, fatty acids, and a small percentage of other components. Bee pollen is stored in brood cells, mixed with saliva, and sealed with a drop of honey. Bee pollen is harvested as food for humans and marketed as having various, but yet unproven, health benefits.

<span class="mw-page-title-main">Nasonov pheromone</span>

The Nasonovpheromone is released by worker bees to orient returning forager bees back to the colony. To broadcast this scent, bees raise their abdomens, which contain the Nasonov glands, and fan their wings vigorously.

<span class="mw-page-title-main">Small hive beetle</span> Species of beetle

Aethina tumida,commonly known as small hive beetle (SHB), is a beekeeping pest. It is native to sub-Saharan Africa, but has spread to many other regions, including North America, Australia, and the Philippines.

<i>Apis florea</i> Species of bee

The dwarf honey bee, Apis florea, is one of two species of small, wild honey bees of southern and southeastern Asia. It has a much wider distribution than its sister species, Apis andreniformis. First identified in the late 18th century, Apis florea is unique for its morphology, foraging behavior and defensive mechanisms like making a piping noise. Apis florea have open nests and small colonies, which makes them more susceptible to predation than cavity nesters with large numbers of defensive workers. These honey bees are important pollinators and therefore commodified in countries like Cambodia.

<span class="mw-page-title-main">Cape honey bee</span> Subspecies of honey bee

The Cape honey bee or Cape bee is a southern South African subspecies of the western honey bee. They play a major role in South African agriculture and the economy of the Western Cape by pollinating crops and producing honey in the Western Cape region of South Africa. The species is endemic to the Western Cape region of South Africa on the coastal side of the Cape Fold mountain range.

<i>Apis andreniformis</i> Species of bee

Apis andreniformis, or the black dwarf honey bee, is a relatively rare species of honey bee whose native habitat is the tropical and subtropical regions of Southeast Asia.

<span class="mw-page-title-main">East African lowland honey bee</span> Subspecies of honey bee native to Africa

The East African lowland honey bee is a subspecies of the western honey bee. It is native to central, southern and eastern Africa, though at the southern extreme it is replaced by the Cape honey bee. This subspecies has been determined to constitute one part of the ancestry of the Africanized bees spreading through North and South America.

<span class="mw-page-title-main">Western honey bee</span> European honey bee

The western honey bee or European honey bee is the most common of the 7–12 species of honey bees worldwide. The genus name Apis is Latin for "bee", and mellifera is the Latin for "honey-bearing" or "honey carrying", referring to the species' production of honey.

<i>Apis cerana</i> Species of insect

Apis cerana, the eastern honey bee, Asiatic honey bee or Asian honey bee, is a species of honey bee native to South, Southeast and East Asia. This species is the sister species of Apis koschevnikovi and both are in the same subgenus as the western (European) honey bee, Apis mellifera. A. cerana is known to live sympatrically along with Apis koschevnikovi within the same geographic location. Apis cerana colonies are known for building nests consisting of multiple combs in cavities containing a small entrance, presumably for defense against invasion by individuals of another nest. The diet of this honey bee species consists mostly of pollen and nectar, or honey. Moreover, Apis cerana is known for its highly social behavior, reflective of its classification as a type of honey bee.

<i>Trigona spinipes</i> Species of bee

Trigona spinipes is a species of stingless bee. It occurs in Brazil, where it is called arapuá, aripuá, irapuá, japurá or abelha-cachorro ("dog-bee"). The species name means "spiny feet" in Latin. Trigona spinipes builds its nest on trees, out of mud, resin, wax, and assorted debris, including dung. Therefore, its honey is not fit for consumption, even though it is reputed to be of good quality by itself, and is used in folk medicine. Colonies may have from 5,000 to over 100,000 workers.

Queen retinue pheromones (QRP) are a type of honey bee pheromones, so-called because one of their behavioral effects is to attract a circle of bees around the queen.

<span class="mw-page-title-main">Bumblebee communication</span>

Bumblebees, like the honeybee collect nectar and pollen from flowers and store them for food. Many individuals must be recruited to forage for food to provide for the hive. Some bee species have highly developed ways of communicating with each other about the location and quality of food resources ranging from physical to chemical displays.

Queen mandibular pheromone, or QMP, is a honey bee pheromone produced by the queen and fed to her attendants who share it with the rest of the colony to give the colony the sense of belonging to the queen. Newly emerged queens produce very little QMP. By the sixth day they are producing enough to attract drones for mating. A laying queen makes twice that amount. Lack of QMP seems to attract robber bees. A study of foraging worker bees has suggested that foraging bees are not attracted to QMP.

<i>Melipona beecheii</i> Species of bee

Melipona beecheii is a species of eusocial stingless bee. It is native to Central America from the Yucatán Peninsula in the north to Costa Rica in the south. M. beecheii was cultivated in the Yucatán Peninsula starting in the pre-Columbian era by the ancient Maya civilization. The Mayan name for M. beecheii is xunan kab, which translates roughly to "regal lady bee". M. beecheii serves as the subject of various Mayan religious ceremonies.

<span class="mw-page-title-main">Insect pheromones</span> Neurotransmitters used by insects

Insect pheromones are neurotransmitters that serve the chemical communication between individuals of an insect species. They thus differ from kairomones, in other words, neurotransmitters that transmit information to non-species organisms. Insects produce pheromones in special glands and release them into the environment. In the pheromone receptors of the sensory cells of the recipient, they produce a nerve stimulus even in very low concentrations, which ultimately leads to a behavioral response. Intraspecific communication of insects via these substances takes place in a variety of ways and serves, among other things, to find sexual partner, to maintain harmony in a colony of socially living insects, to mark territories or to find nest sites and food sources.

<span class="mw-page-title-main">9-Oxodecenoic acid</span> Chemical compound

9-Oxodecenoic acid (9-oxo-2(E)-decenoic acid, also called 9-ODA) is an unsaturated ketocarboxylic or fatty acid and a pheromone secreted by the queen bee of the honeybee species Apis mellifera. It functions as a sex attractant that stimulates the olfactory receptors of male drones. Additionally, this acid plays a crucial role in regulating the colony's social structure; it inhibits the development of ovaries in worker bees, which are sterile females. However, its inhibitory effect on the worker bees' ovaries is only fully effective when combined with another pheromone, 9-hydroxydecenoic acid. When the queen bee is removed from the hive, the worker bees initiate the construction of new queen cells and the previously inhibited drones develop functional ovaries. The exact biological mechanisms through which 9-oxodecenoic acid and related substances influence these processes are not fully understood, but they are thought to affect the nervous system in some way.