List of mathematical series Last updated October 03, 2025
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.
Power series Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship∑ k = 0 ∞ ( − 1 ) k z 2 k + 1 ( 2 k + 1 ) ! = sin z {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)!}}=\sin z} ∑ k = 0 ∞ z 2 k + 1 ( 2 k + 1 ) ! = sinh z {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)!}}=\sinh z} ∑ k = 0 ∞ ( − 1 ) k z 2 k ( 2 k ) ! = cos z {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{(2k)!}}=\cos z} ∑ k = 0 ∞ z 2 k ( 2 k ) ! = cosh z {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k}}{(2k)!}}=\cosh z} ∑ k = 1 ∞ ( − 1 ) k − 1 ( 2 2 k − 1 ) 2 2 k B 2 k z 2 k − 1 ( 2 k ) ! = tan z , | z | < π 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tan z,|z|<{\frac {\pi }{2}}} ∑ k = 1 ∞ ( 2 2 k − 1 ) 2 2 k B 2 k z 2 k − 1 ( 2 k ) ! = tanh z , | z | < π 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tanh z,|z|<{\frac {\pi }{2}}} ∑ k = 0 ∞ ( − 1 ) k 2 2 k B 2 k z 2 k − 1 ( 2 k ) ! = cot z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\cot z,|z|<\pi } ∑ k = 0 ∞ 2 2 k B 2 k z 2 k − 1 ( 2 k ) ! = coth z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\coth z,|z|<\pi } ∑ k = 0 ∞ ( − 1 ) k − 1 ( 2 2 k − 2 ) B 2 k z 2 k − 1 ( 2 k ) ! = csc z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\csc z,|z|<\pi } ∑ k = 0 ∞ − ( 2 2 k − 2 ) B 2 k z 2 k − 1 ( 2 k ) ! = csch z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {-(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\operatorname {csch} z,|z|<\pi } ∑ k = 0 ∞ ( − 1 ) k E 2 k z 2 k ( 2 k ) ! = sech z , | z | < π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}E_{2k}z^{2k}}{(2k)!}}=\operatorname {sech} z,|z|<{\frac {\pi }{2}}} ∑ k = 0 ∞ E 2 k z 2 k ( 2 k ) ! = sec z , | z | < π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {E_{2k}z^{2k}}{(2k)!}}=\sec z,|z|<{\frac {\pi }{2}}} ∑ k = 1 ∞ ( − 1 ) k − 1 z 2 k ( 2 k ) ! = ver z {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{(2k)!}}=\operatorname {ver} z} (versine )∑ k = 1 ∞ ( − 1 ) k − 1 z 2 k 2 ( 2 k ) ! = hav z {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{2(2k)!}}=\operatorname {hav} z} [ 1] (haversine )∑ k = 0 ∞ ( 2 k ) ! z 2 k + 1 2 2 k ( k ! ) 2 ( 2 k + 1 ) = arcsin z , | z | ≤ 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\arcsin z,|z|\leq 1} ∑ k = 0 ∞ ( − 1 ) k ( 2 k ) ! z 2 k + 1 2 2 k ( k ! ) 2 ( 2 k + 1 ) = arcsinh z , | z | ≤ 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\operatorname {arcsinh} {z},|z|\leq 1} ∑ k = 0 ∞ ( − 1 ) k z 2 k + 1 2 k + 1 = arctan z , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2k+1}}=\arctan z,|z|<1} ∑ k = 0 ∞ z 2 k + 1 2 k + 1 = arctanh z , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{2k+1}}=\operatorname {arctanh} z,|z|<1} ln 2 + ∑ k = 1 ∞ ( − 1 ) k − 1 ( 2 k ) ! z 2 k 2 2 k + 1 k ( k ! ) 2 = ln ( 1 + 1 + z 2 ) , | z | ≤ 1 {\displaystyle \ln 2+\sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2k)!z^{2k}}{2^{2k+1}k(k!)^{2}}}=\ln \left(1+{\sqrt {1+z^{2}}}\right),|z|\leq 1} ∑ k = 2 ∞ ( k ⋅ arctanh ( 1 k ) − 1 ) = 3 − ln ( 4 π ) 2 {\displaystyle \sum _{k=2}^{\infty }\left(k\cdot \operatorname {arctanh} \left({\frac {1}{k}}\right)-1\right)={\frac {3-\ln(4\pi )}{2}}} Modified-factorial denominators ∑ k = 0 ∞ ( 4 k ) ! 2 4 k 2 ( 2 k ) ! ( 2 k + 1 ) ! z k = 1 − 1 − z z , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(4k)!}{2^{4k}{\sqrt {2}}(2k)!(2k+1)!}}z^{k}={\sqrt {\frac {1-{\sqrt {1-z}}}{z}}},|z|<1} [ 2] ∑ k = 0 ∞ 2 2 k ( k ! ) 2 ( k + 1 ) ( 2 k + 1 ) ! z 2 k + 2 = ( arcsin z ) 2 , | z | ≤ 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}(k!)^{2}}{(k+1)(2k+1)!}}z^{2k+2}=\left(\arcsin {z}\right)^{2},|z|\leq 1} [ 2] ∑ n = 0 ∞ ∏ k = 0 n − 1 ( 4 k 2 + α 2 ) ( 2 n ) ! z 2 n + ∑ n = 0 ∞ α ∏ k = 0 n − 1 [ ( 2 k + 1 ) 2 + α 2 ] ( 2 n + 1 ) ! z 2 n + 1 = e α arcsin z , | z | ≤ 1 {\displaystyle \sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(4k^{2}+\alpha ^{2})}{(2n)!}}z^{2n}+\sum _{n=0}^{\infty }{\frac {\alpha \prod _{k=0}^{n-1}[(2k+1)^{2}+\alpha ^{2}]}{(2n+1)!}}z^{2n+1}=e^{\alpha \arcsin {z}},|z|\leq 1} Binomial coefficients ( 1 + z ) α = ∑ k = 0 ∞ ( α k ) z k , | z | < 1 {\displaystyle (1+z)^{\alpha }=\sum _{k=0}^{\infty }{\alpha \choose k}z^{k},|z|<1} (see Binomial theorem § Newton's generalized binomial theorem ) [ 3] ∑ k = 0 ∞ ( α + k − 1 k ) z k = 1 ( 1 − z ) α , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{{\alpha +k-1} \choose k}z^{k}={\frac {1}{(1-z)^{\alpha }}},|z|<1} [ 3] ∑ k = 0 ∞ 1 k + 1 ( 2 k k ) z k = 1 − 1 − 4 z 2 z , | z | ≤ 1 4 {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k+1}}{2k \choose k}z^{k}={\frac {1-{\sqrt {1-4z}}}{2z}},|z|\leq {\frac {1}{4}}} , generating function of the Catalan numbers [ 3] ∑ k = 0 ∞ ( 2 k k ) z k = 1 1 − 4 z , | z | < 1 4 {\displaystyle \sum _{k=0}^{\infty }{2k \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}},|z|<{\frac {1}{4}}} , generating function of the Central binomial coefficients [ 3] ∑ k = 0 ∞ ( 2 k + α k ) z k = 1 1 − 4 z ( 1 − 1 − 4 z 2 z ) α , | z | < 1 4 {\displaystyle \sum _{k=0}^{\infty }{2k+\alpha \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}}\left({\frac {1-{\sqrt {1-4z}}}{2z}}\right)^{\alpha },|z|<{\frac {1}{4}}} Harmonic numbers (See harmonic numbers , themselves defined H n = ∑ j = 1 n 1 j {\textstyle H_{n}=\sum _{j=1}^{n}{\frac {1}{j}}} , and H ( x ) {\displaystyle H(x)} generalized to the real numbers)
∑ k = 1 ∞ H k z k = − ln ( 1 − z ) 1 − z , | z | < 1 {\displaystyle \sum _{k=1}^{\infty }H_{k}z^{k}={\frac {-\ln(1-z)}{1-z}},|z|<1} ∑ k = 1 ∞ H k k + 1 z k + 1 = 1 2 [ ln ( 1 − z ) ] 2 , | z | < 1 {\displaystyle \sum _{k=1}^{\infty }{\frac {H_{k}}{k+1}}z^{k+1}={\frac {1}{2}}\left[\ln(1-z)\right]^{2},\qquad |z|<1} ∑ k = 1 ∞ ( − 1 ) k − 1 H 2 k 2 k + 1 z 2 k + 1 = 1 2 arctan z log ( 1 + z 2 ) , | z | < 1 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}H_{2k}}{2k+1}}z^{2k+1}={\frac {1}{2}}\arctan {z}\log {(1+z^{2})},\qquad |z|<1} [ 2] ∑ n = 0 ∞ ∑ k = 0 2 n ( − 1 ) k 2 k + 1 z 4 n + 2 4 n + 2 = 1 4 arctan z log 1 + z 1 − z , | z | < 1 {\displaystyle \sum _{n=0}^{\infty }\sum _{k=0}^{2n}{\frac {(-1)^{k}}{2k+1}}{\frac {z^{4n+2}}{4n+2}}={\frac {1}{4}}\arctan {z}\log {\frac {1+z}{1-z}},\qquad |z|<1} [ 2] ∑ n = 0 ∞ x 2 n 2 ( n + x ) = x π 2 6 − H ( x ) {\displaystyle \sum _{n=0}^{\infty }{\frac {x^{2}}{n^{2}(n+x)}}=x{\frac {\pi ^{2}}{6}}-H(x)} Binomial coefficients ∑ k = 0 n ( n k ) = 2 n {\displaystyle \sum _{k=0}^{n}{n \choose k}=2^{n}} ∑ k = 0 n ( n k ) 2 = ( 2 n n ) {\displaystyle \sum _{k=0}^{n}{n \choose k}^{2}={2n \choose n}} ∑ k = 0 n ( − 1 ) k ( n k ) = 0 , where n ≥ 1 {\displaystyle \sum _{k=0}^{n}(-1)^{k}{n \choose k}=0,{\text{ where }}n\geq 1} ∑ k = 0 n ( k m ) = ( n + 1 m + 1 ) {\displaystyle \sum _{k=0}^{n}{k \choose m}={n+1 \choose m+1}} ∑ k = 0 n ( m + k − 1 k ) = ( n + m n ) {\displaystyle \sum _{k=0}^{n}{m+k-1 \choose k}={n+m \choose n}} (see Multiset )∑ k = 0 n ( α k ) ( β n − k ) = ( α + β n ) , where α + β ≥ n {\displaystyle \sum _{k=0}^{n}{\alpha \choose k}{\beta \choose n-k}={\alpha +\beta \choose n},{\text{where}}\ \alpha +\beta \geq n} (see Vandermonde identity )∑ A ∈ P ( E ) 1 = 2 n , where E is a finite set, and card( E ) = n {\displaystyle \sum _{A\ \in \ {\mathcal {P}}(E)}1=2^{n}{\text{, where }}E{\text{ is a finite set, and card(}}E{\text{) = n}}} ∑ { ( A , B ) ∈ ( P ( E ) ) 2 A ⊂ B 1 = 3 n , where E is a finite set, and card( E ) = n {\displaystyle \sum _{\begin{cases}(A,\ B)\ \in \ ({\mathcal {P}}(E))^{2}\\A\ \subset \ B\end{cases}}1=3^{n}{\text{, where }}E{\text{ is a finite set, and card(}}E{\text{) = n}}} ∑ A ∈ P ( E ) c a r d ( A ) = n 2 n − 1 , where E is a finite set, and card( E ) = n {\displaystyle \sum _{A\ \in \ {\mathcal {P}}(E)}card(A)=n2^{n-1}{\text{, where }}E{\text{ is a finite set, and card(}}E{\text{) = n}}} Trigonometric functions Sums of sines and cosines arise in Fourier series .
∑ k = 1 ∞ cos ( k θ ) k = − 1 2 ln ( 2 − 2 cos θ ) = − ln ( 2 sin θ 2 ) , 0 < θ < 2 π {\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(k\theta )}{k}}=-{\frac {1}{2}}\ln(2-2\cos \theta )=-\ln \left(2\sin {\frac {\theta }{2}}\right),0<\theta <2\pi } ∑ k = 1 ∞ sin ( k θ ) k = π − θ 2 , 0 < θ < 2 π {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(k\theta )}{k}}={\frac {\pi -\theta }{2}},0<\theta <2\pi } ∑ k = 1 ∞ ( − 1 ) k − 1 k cos ( k θ ) = 1 2 ln ( 2 + 2 cos θ ) = ln ( 2 cos θ 2 ) , 0 ≤ θ < π {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}}{k}}\cos(k\theta )={\frac {1}{2}}\ln(2+2\cos \theta )=\ln \left(2\cos {\frac {\theta }{2}}\right),0\leq \theta <\pi } ∑ k = 1 ∞ ( − 1 ) k − 1 k sin ( k θ ) = θ 2 , − π 2 ≤ θ ≤ π 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}}{k}}\sin(k\theta )={\frac {\theta }{2}},-{\frac {\pi }{2}}\leq \theta \leq {\frac {\pi }{2}}} ∑ k = 1 ∞ cos ( 2 k θ ) 2 k = − 1 2 ln ( 2 sin θ ) , 0 < θ < π {\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(2k\theta )}{2k}}=-{\frac {1}{2}}\ln(2\sin \theta ),0<\theta <\pi } ∑ k = 1 ∞ sin ( 2 k θ ) 2 k = π − 2 θ 4 , 0 < θ < π {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(2k\theta )}{2k}}={\frac {\pi -2\theta }{4}},0<\theta <\pi } ∑ k = 0 ∞ cos [ ( 2 k + 1 ) θ ] 2 k + 1 = 1 2 ln ( cot θ 2 ) , 0 < θ < π {\displaystyle \sum _{k=0}^{\infty }{\frac {\cos[(2k+1)\theta ]}{2k+1}}={\frac {1}{2}}\ln \left(\cot {\frac {\theta }{2}}\right),0<\theta <\pi } ∑ k = 0 ∞ sin [ ( 2 k + 1 ) θ ] 2 k + 1 = π 4 , 0 < θ < π {\displaystyle \sum _{k=0}^{\infty }{\frac {\sin[(2k+1)\theta ]}{2k+1}}={\frac {\pi }{4}},0<\theta <\pi } , [ 4] ∑ k = 1 ∞ sin ( 2 π k x ) k = π ( 1 2 − { x } ) , x ∈ R {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(2\pi kx)}{k}}=\pi \left({\dfrac {1}{2}}-\{x\}\right),\ x\in \mathbb {R} } ∑ k = 1 ∞ sin ( 2 π k x ) k 2 n − 1 = ( − 1 ) n ( 2 π ) 2 n − 1 2 ( 2 n − 1 ) ! B 2 n − 1 ( { x } ) , x ∈ R , n ∈ N {\displaystyle \sum \limits _{k=1}^{\infty }{\frac {\sin \left(2\pi kx\right)}{k^{2n-1}}}=(-1)^{n}{\frac {(2\pi )^{2n-1}}{2(2n-1)!}}B_{2n-1}(\{x\}),\ x\in \mathbb {R} ,\ n\in \mathbb {N} } ∑ k = 1 ∞ cos ( 2 π k x ) k 2 n = ( − 1 ) n − 1 ( 2 π ) 2 n 2 ( 2 n ) ! B 2 n ( { x } ) , x ∈ R , n ∈ N {\displaystyle \sum \limits _{k=1}^{\infty }{\frac {\cos \left(2\pi kx\right)}{k^{2n}}}=(-1)^{n-1}{\frac {(2\pi )^{2n}}{2(2n)!}}B_{2n}(\{x\}),\ x\in \mathbb {R} ,\ n\in \mathbb {N} } B n ( x ) = − n ! 2 n − 1 π n ∑ k = 1 ∞ 1 k n cos ( 2 π k x − π n 2 ) , 0 < x < 1 {\displaystyle B_{n}(x)=-{\frac {n!}{2^{n-1}\pi ^{n}}}\sum _{k=1}^{\infty }{\frac {1}{k^{n}}}\cos \left(2\pi kx-{\frac {\pi n}{2}}\right),0<x<1} [ 5] ∑ k = 0 n sin ( θ + k α ) = sin ( n + 1 ) α 2 sin ( θ + n α 2 ) sin α 2 {\displaystyle \sum _{k=0}^{n}\sin(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\sin(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}} ∑ k = 0 n cos ( θ + k α ) = sin ( n + 1 ) α 2 cos ( θ + n α 2 ) sin α 2 {\displaystyle \sum _{k=0}^{n}\cos(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\cos(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}} ∑ k = 1 n − 1 sin π k n = cot π 2 n {\displaystyle \sum _{k=1}^{n-1}\sin {\frac {\pi k}{n}}=\cot {\frac {\pi }{2n}}} ∑ k = 1 n − 1 sin 2 π k n = 0 {\displaystyle \sum _{k=1}^{n-1}\sin {\frac {2\pi k}{n}}=0} ∑ k = 0 n − 1 csc 2 ( θ + π k n ) = n 2 csc 2 ( n θ ) {\displaystyle \sum _{k=0}^{n-1}\csc ^{2}\left(\theta +{\frac {\pi k}{n}}\right)=n^{2}\csc ^{2}(n\theta )} [ 6] ∑ k = 1 n − 1 csc 2 π k n = n 2 − 1 3 {\displaystyle \sum _{k=1}^{n-1}\csc ^{2}{\frac {\pi k}{n}}={\frac {n^{2}-1}{3}}} ∑ k = 1 n − 1 csc 4 π k n = n 4 + 10 n 2 − 11 45 {\displaystyle \sum _{k=1}^{n-1}\csc ^{4}{\frac {\pi k}{n}}={\frac {n^{4}+10n^{2}-11}{45}}} Rational functions ∑ n = a + 1 ∞ a n 2 − a 2 = 1 2 H 2 a {\displaystyle \sum _{n=a+1}^{\infty }{\frac {a}{n^{2}-a^{2}}}={\frac {1}{2}}H_{2a}} [ 7] ∑ n = 0 ∞ 1 n 2 + a 2 = 1 + a π coth ( a π ) 2 a 2 {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{2}+a^{2}}}={\frac {1+a\pi \coth(a\pi )}{2a^{2}}}} ∑ n = 0 ∞ ( − 1 ) n n 2 + a 2 = 1 + a π csch ( a π ) 2 a 2 {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n^{2}+a^{2}}}={\frac {1+a\pi \;{\text{csch}}(a\pi )}{2a^{2}}}} ∑ n = 0 ∞ ( 2 n + 1 ) ( − 1 ) n ( 2 n + 1 ) 2 + a 2 = π 4 sech ( a π 2 ) {\displaystyle \sum _{n=0}^{\infty }{\frac {(2n+1)(-1)^{n}}{(2n+1)^{2}+a^{2}}}={\frac {\pi }{4}}{\text{sech}}\left({\frac {a\pi }{2}}\right)} ∑ n = 0 ∞ 1 n 4 + 4 a 4 = 1 8 a 4 + π ( sinh ( 2 π a ) + sin ( 2 π a ) ) 8 a 3 ( cosh ( 2 π a ) − cos ( 2 π a ) ) {\displaystyle \displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{4}+4a^{4}}}={\dfrac {1}{8a^{4}}}+{\dfrac {\pi (\sinh(2\pi a)+\sin(2\pi a))}{8a^{3}(\cosh(2\pi a)-\cos(2\pi a))}}} An infinite series of any rational function of n {\displaystyle n} can be reduced to a finite series of polygamma functions , by use of partial fraction decomposition , [ 8] as explained here . This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms. Exponential function 1 p ∑ n = 0 p − 1 exp ( 2 π i n 2 q p ) = e π i / 4 2 q ∑ n = 0 2 q − 1 exp ( − π i n 2 p 2 q ) {\displaystyle \displaystyle {\dfrac {1}{\sqrt {p}}}\sum _{n=0}^{p-1}\exp \left({\frac {2\pi in^{2}q}{p}}\right)={\dfrac {e^{\pi i/4}}{\sqrt {2q}}}\sum _{n=0}^{2q-1}\exp \left(-{\frac {\pi in^{2}p}{2q}}\right)} (see the Landsberg–Schaar relation )∑ n = − ∞ ∞ e − π n 2 = π 4 Γ ( 3 4 ) {\displaystyle \displaystyle \sum _{n=-\infty }^{\infty }e^{-\pi n^{2}}={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}} Notes ↑ Weisstein, Eric W. "Haversine" . MathWorld . Wolfram Research, Inc. Archived from the original on 2005-03-10. Retrieved 2015-11-06 . 1 2 3 4 Wilf, Herbert R. (1994). generatingfunctionology (PDF) . Academic Press, Inc. 1 2 3 4 "Theoretical computer science cheat sheet" (PDF) . ↑ Calculate the Fourier expansion of the function f ( x ) = π 4 {\displaystyle f(x)={\frac {\pi }{4}}} on the interval 0 < x < π {\displaystyle 0<x<\pi } : π 4 = ∑ n = 0 ∞ c n sin [ n x ] + d n cos [ n x ] {\displaystyle {\frac {\pi }{4}}=\sum _{n=0}^{\infty }c_{n}\sin[nx]+d_{n}\cos[nx]} ⇒ { c n = { 1 n ( n odd ) 0 ( n even ) d n = 0 ( ∀ n ) {\displaystyle \Rightarrow {\begin{cases}c_{n}={\begin{cases}{\frac {1}{n}}\quad (n{\text{ odd}})\\0\quad (n{\text{ even}})\end{cases}}\\d_{n}=0\quad (\forall n)\end{cases}}} ↑ "Bernoulli polynomials: Series representations (subsection 06/02)" . Wolfram Research . Retrieved 2 June 2011 . ↑ Hofbauer, Josef. "A simple proof of 1 + 1/22 + 1/32 + · · · = π 2 /6 and related identities" (PDF) . Retrieved 2 June 2011 . ↑ Sondow, Jonathan; Weisstein, Eric W. "Riemann Zeta Function (eq. 52)" . MathWorld —A Wolfram Web Resource . ↑ Abramowitz, Milton ; Stegun, Irene (1964). "6.4 Polygamma functions" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Courier Corporation. p. 260 . ISBN 0-486-61272-4 . This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.