List of mitosporic Ascomycota

Last updated

The mitosporic Ascomycota are a heterogeneous group of ascomycotic fungi whose common characteristic is the absence of a sexual state (anamorph) [1] ; many of the pathogenic fungi in humans belong to this group.

Related Research Articles

<span class="mw-page-title-main">Ascomycota</span> Division or phylum of fungi

Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defining feature of this fungal group is the "ascus", a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of Ascomycota are asexual and thus do not form asci or ascospores. Familiar examples of sac fungi include morels, truffles, brewers' and bakers' yeast, dead man's fingers, and cup fungi. The fungal symbionts in the majority of lichens such as Cladonia belong to the Ascomycota.

<span class="mw-page-title-main">Spore</span> Unit of reproduction adapted for dispersal and survival in unfavorable conditions

In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, fungi and protozoa. They were thought to have appeared as early as the mid-late Ordovician period as an adaptation of early land plants.

<span class="mw-page-title-main">Bacteroidota</span> Phylum of Gram-negative bacteria

The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

In mycology, the terms teleomorph, anamorph, and holomorph apply to portions of the life cycles of fungi in the phyla Ascomycota and Basidiomycota:

<i>Aspergillus</i> Genus of fungi

Aspergillus is a genus consisting of several hundred mold species found in various climates worldwide.

<span class="mw-page-title-main">Mating in fungi</span> Combination of genetic material between compatible mating types

Fungi are a diverse group of organisms that employ a huge variety of reproductive strategies, ranging from fully asexual to almost exclusively sexual species. Most species can reproduce both sexually and asexually, alternating between haploid and diploid forms. This contrasts with most multicellular eukaryotes such as mammals, where the adults are usually diploid and produce haploid gametes which combine to form the next generation. In fungi, both haploid and diploid forms can reproduce – haploid individuals can undergo asexual reproduction while diploid forms can produce gametes that combine to give rise to the next generation.

Neocallimastigomycota is a phylum containing anaerobic fungi, which are symbionts found in the digestive tracts of larger herbivores. Anaerobic fungi were originally placed within phylum Chytridiomycota, within Order Neocallimastigales but later raised to phylum level, a decision upheld by later phylogenetic reconstructions. It encompasses only one family.

<span class="mw-page-title-main">Sporocarp (fungus)</span> Fungal structure on which spore-producing structures are borne

The sporocarp of fungi is a multicellular structure on which spore-producing structures, such as basidia or asci, are borne. The fruitbody is part of the sexual phase of a fungal life cycle, while the rest of the life cycle is characterized by vegetative mycelial growth and asexual spore production.

<span class="mw-page-title-main">Dikarya</span> Subkingdom of fungi

Dikarya is a subkingdom of Fungi that includes the divisions Ascomycota and Basidiomycota, both of which in general produce dikaryons, may be filamentous or unicellular, but are always without flagella. The Dikarya are most of the so-called "higher fungi", but also include many anamorphic species that would have been classified as molds in historical literature. Phylogenetically the two divisions regularly group together. In a 1998 publication, Thomas Cavalier-Smith referred to this group as the Neomycota.

A lipopeptide is a molecule consisting of a lipid connected to a peptide. They are able to self-assemble into different structures. Many bacteria produce these molecules as a part of their metabolism, especially those of the genus Bacillus, Pseudomonas and Streptomyces. Certain lipopeptides are used as antibiotics. Due to the structural and molecular properties such as the fatty acid chain, it poses the effect of weakening the cell function or destroying the cell. Other lipopeptides are toll-like receptor agonists. Certain lipopeptides can have strong antifungal and hemolytic activities. It has been demonstrated that their activity is generally linked to interactions with the plasma membrane, and sterol components of the plasma membrane could play a major role in this interaction. It is a general trend that adding a lipid group of a certain length to a lipopeptide will increase its bactericidal activity. Lipopeptides with a higher amount of carbon atoms, for example 14 or 16, in its lipid tail will typically have antibacterial activity as well as anti-fungal activity. Therefore, an increase in the alkyl chain can make lipopeptides soluble in water. As well, it opens the cell membrane of the bacteria, so antimicrobial activity can take place.

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

Homothallic refers to the possession, within a single organism, of the resources to reproduce sexually; i.e., having male and female reproductive structures on the same thallus. The opposite sexual functions are performed by different cells of a single mycelium.

<span class="mw-page-title-main">Fungi imperfecti</span> Fungal classification based on asexual characters when sexual reproduction is unidentified

The fungi imperfecti or imperfect fungi are fungi which do not fit into the commonly established taxonomic classifications of fungi that are based on biological species concepts or morphological characteristics of sexual structures because their sexual form of reproduction has never been observed. They are known as imperfect fungi because only their asexual and vegetative phases are known. They have asexual form of reproduction, meaning that these fungi produce their spores asexually, in the process called sporogenesis.

Black yeasts, sometimes also black fungi, dematiaceous fungi, microcolonial fungi or meristematic fungi is a diverse group of slow-growing microfungi which reproduce mostly asexually. Only few genera reproduce by budding cells, while in others hyphal or meristematic (isodiametric) reproduction is preponderant. Black yeasts share some distinctive characteristics, in particular a dark colouration (melanisation) of their cell wall. Morphological plasticity, incrustation of the cell wall with melanins and presence of other protective substances like carotenoids and mycosporines represent passive physiological adaptations which enable black fungi to be highly resistant against environmental stresses. The term "polyextremotolerance" has been introduced to describe this phenotype, an example of which is the species Aureobasidium pullulans. Presence of 1,8-dihydroxynaphthalene melanin in the cell wall confers to the microfungi their characteristic olivaceous to dark brown/black colour.

<span class="mw-page-title-main">Root microbiome</span> Microbe community of plant roots

The root microbiome is the dynamic community of microorganisms associated with plant roots. Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi, and archaea. The microbial communities inside the root and in the rhizosphere are distinct from each other, and from the microbial communities of bulk soil, although there is some overlap in species composition.

<i>Equulites elongatus</i> Species of fish

Equulites elongatus, the slender ponyfish, also called the elongate ponyfish, elongate slimy or elongated slipmouth, is a marine fish of the family Leiognathidae native to the western Pacific and Indian Oceans.

<i>Fonsecaea compacta</i> Species of fungus

Fonsecaea compacta is a saprophytic fungal species found in the family Herpotrichiellaceae. It is a rare etiological agent of chromoblastomycosis, with low rates of correspondence observed from reports. The main active components of F. compacta are glycolipids, yet very little is known about its composition. F. compacta is widely regarded as a dysplastic variety of Fonsecaea pedrosoi, its morphological precursor. The genus Fonsecaea presently contains two species, F. pedrosoi and F. compacta. Over 100 strains of F. pedrosoi have been isolated but only two of F. compacta.

Autogamy or self-fertilization refers to the fusion of two gametes that come from one individual. Autogamy is predominantly observed in the form of self-pollination, a reproductive mechanism employed by many flowering plants. However, species of protists have also been observed using autogamy as a means of reproduction. Flowering plants engage in autogamy regularly, while the protists that engage in autogamy only do so in stressful environments.

<span class="mw-page-title-main">Hülle cell</span>

Eduard Eidam first described Hülle cells in 1883 where he termed Hülle cells as a “Blasenhülle” or bubble envelope. In different species, Hülle cell like structures are known such as in Candida albicans which produce at the very end of the hyphae globose blisters named chlamydospores. Eidam suggested that Hülle cells originate from the tip of “secondary hyphae” which in turn emerge from “primary hyphae” and develop as a consequence of a swelling process. Hülle cells and the subtending hyphae are connected via two distinct types of septa. The inner one is a single perforate septum where woronin bodies can be observed and represents a typical ascomycetous septum. The second septum which separates Hülle cells from the subtending hyphae is unique and named basal septum. At the basal septum vesicle fusion is observable. Consequently, to this fusion so called lomasome-like accumulations are visible. These lomasome-like structures are membrane-invaginations. In Hülle cells several nuclei, mitochondria, lipid bodies and storage products can be observed. During initial Hülle cell formation, it was shown that several nuclei fuse to form a marcronucleus. Different species of the genus Aspergillus produce Hülle cells, including Aspergillus nidulans and Aspergillus heterothallicus. Hülle cells have an average size of 12-20 μm, are of globose shape with an unusual thick cell wall and are mainly associated with the sexual developmental program. Hülle cells are known for all species in the section Nidulantes. In different species, Hülle cells vary in shape between the more elongated such as in Aspergillus ustus and the globose version like in Aspergillus nidulans. In Aspergillus nidulans and Aspergillus heterothallicus Hülle cells associate with the cleistothecia, whereas in Aspergillus protuberus and Aspergillus ustus Hülle cells are not in direct contact with the cleistothecia and are formed in masses.

RAC otherwise known as Repository of Antibiotic resistance Cassettes is a database that uses the automatic Attacca annotation system in order to comprehensively annotate gene-cassettes and transposable elements in a stream-lined manner and to discover novel gene cassettes. Antibiotic resistance is often due to horizontal gene transfer, which allows resistance to arise through cell-to-cell interaction. This poses a major challenge in the field of antibiotic resistance. Hence, the creation of RAC which would provide researchers a comprehensive and unique tool for the endeavor of documenting resistance due to gene-cassettes and transposable elements. Attacca helps discover novel gene cassettes when any three of the following occurs as mentioned in Tsafnat et al, 2011:

References

  1. Dyer, Paul S.; O'Gorman, Céline M. (January 2012). "Sexual development and cryptic sexuality in fungi: insights from Aspergillus species". FEMS Microbiology Reviews. 36 (1): 165–192. doi:10.1111/j.1574-6976.2011.00308.x. ISSN   1574-6976.