Lithium bis(oxalate)borate

Last updated
Lithium bis(oxalate)borate
LiBOB improved.svg
Names
Other names
LiBOB
Identifiers
PubChem CID
Properties
C4BLiO8
Molar mass 193.79 g·mol−1
Appearancewhite solid
Density 2.021 g/cm3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Lithium bis(oxalate)borate is the inorganic compound with the formula LiB(C2O4)2. A white solid, it is used as an electrolyte in some lithium batteries. [1] It is one of several borate oxalates.

According to X-ray crystallography, solid LiBOB consists of tetrahedral B(C2O4)2 anions linked by Li+ cations. [2]

Related Research Articles

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: within the next 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.

<span class="mw-page-title-main">Lithium polymer battery</span> Lithium-ion battery using a polymer electrolyte

A lithium polymer battery, or more correctly lithium-ion polymer battery, is a rechargeable battery of lithium-ion technology using a polymer electrolyte instead of a liquid electrolyte. Highly conductive semisolid (gel) polymers form this electrolyte. These batteries provide higher specific energy than other lithium battery types and are used in applications where weight is a critical feature, such as mobile devices, radio-controlled aircraft and some electric vehicles.

<span class="mw-page-title-main">John B. Goodenough</span> American materials scientist (1922–2023)

John Bannister Goodenough was an American materials scientist, a solid-state physicist, and a Nobel laureate in chemistry. From 1996 he was a professor of Mechanical, Materials Science, and Electrical Engineering at the University of Texas at Austin. He is credited with identifying the Goodenough–Kanamori rules of the sign of the magnetic superexchange in materials, with developing materials for computer random-access memory and with inventing cathode materials for lithium-ion batteries.

<span class="mw-page-title-main">M. Stanley Whittingham</span> British-American chemist

Michael Stanley Whittingham is a British-American chemist. He is a professor of chemistry and director of both the Institute for Materials Research and the Materials Science and Engineering program at Binghamton University, State University of New York. He also serves as director of the Northeastern Center for Chemical Energy Storage (NECCES) of the U.S. Department of Energy at Binghamton. He was awarded the Nobel Prize in Chemistry in 2019 alongside Akira Yoshino and John B. Goodenough.

<span class="mw-page-title-main">Lithium cobalt oxide</span> Chemical compound

Lithium cobalt oxide, sometimes called lithium cobaltate or lithium cobaltite, is a chemical compound with formula LiCoO
2
. The cobalt atoms are formally in the +3 oxidation state, hence the IUPAC name lithium cobalt(III) oxide.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

<span class="mw-page-title-main">Iron(II) oxalate</span> Chemical compound

Ferrous oxalate (iron(II) oxalate) are inorganic compound with the formula FeC2O4(H2O)x where x is 0 or 2. These are orange compounds, poorly soluble in water.

<span class="mw-page-title-main">Lithium tetrakis(pentafluorophenyl)borate</span> Chemical compound

Lithium tetrakis(pentafluorophenyl)borate is the lithium salt of the weakly coordinating anion (B(C6F5)4). Because of its weakly coordinating abilities, lithium tetrakis(pentafluorophenyl)borate makes it commercially valuable in the salt form in the catalyst composition for olefin polymerization reactions and in electrochemistry. It is a water-soluble compound. Its anion is closely related to the non-coordinating anion known as BARF. The tetrakis(pentafluorophenyl)borates have the advantage of operating on a one-to-one stoichiometric basis with Group IV transition metal polyolefin catalysts, unlike methylaluminoxane (MAO) which may be used in large excess.

<span class="mw-page-title-main">Cobalt(II) oxalate</span> Chemical compound

Cobalt(II) oxalate is the inorganic compound with the formula of CoC2O4. Like other simple inorganic oxalates, it is a coordination polymer. The oxalate ligands bridge of Co(OH2)2 centres. Each cobalt adopts octahedral coordination geometry.

<span class="mw-page-title-main">Ferric oxalate</span> Chemical compound

Ferric oxalate, also known as iron(III) oxalate, refers to inorganic compounds with the formula Fe2(C2O4)3(H2O)x but could also refer to salts of [Fe(C2O4)3]3-. Fe2(C2O4)3(H2O)x are coordination polymers with varying degrees of hydration. The coordination complex with the formula [Fe(C2O4)3]3- forms a variety of salts, a well-known example being potassium ferrioxalate. This article emphasizes the coordination polymers.

<span class="mw-page-title-main">Titanium disulfide</span> Inorganic chemical compound

Titanium disulfide is an inorganic compound with the formula TiS2. A golden yellow solid with high electrical conductivity, it belongs to a group of compounds called transition metal dichalcogenides, which consist of the stoichiometry ME2. TiS2 has been employed as a cathode material in rechargeable batteries.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

<span class="mw-page-title-main">Caesium oxalate</span> Chemical compound

Caesium oxalate, or dicesium oxalate, or cesium oxalate is a chemical compound with the chemical formula Cs2C2O4. It is a caesium salt of oxalic acid. It consists of caesium cations Cs+ and oxalate anions C2O2−4.

The borate oxalates are chemical compounds containing borate and oxalate anions. Where the oxalate group is bound to the borate via oxygen, a more condensed anion is formed that balances less cations. These can be termed boro-oxalates, bis(oxalato)borates, or oxalatoborates or oxalate borates. The oxalatoborates are heterocyclic compounds with a ring containing -O-B-O-. Bis(oxalato)borates are spiro compounds with rings joined at the boron atom.

<span class="mw-page-title-main">Transition metal oxalate complex</span>

Transition metal oxalate complexes are coordination complexes with oxalate (C2O42−) ligands. Some are useful commercially, but the topic has attracted regular scholarly scrutiny. Oxalate (C2O42-) is a kind of dicarboxylate ligand. As a small, symmetrical dinegative ion, oxalate commonly forms five-membered MO2C2 chelate rings. Mixed ligand complexes are known, e.g., [Co(C2O4)(NH3)4]κ+.

<span class="mw-page-title-main">Oxalate phosphate</span> Chemical compound containing oxalate and phosphate anions

The oxalate phosphates are chemical compounds containing oxalate and phosphate anions. They are also called oxalatophosphates or phosphate oxalates. Some oxalate-phosphate minerals found in bat guano deposits are known. Oxalate phosphates can form metal organic framework compounds.

<span class="mw-page-title-main">Tin(II) oxalate</span> Chemical compound

Tin(II) oxalate is an inorganic compound, a salt of tin and oxalic acid with the chemical formula SnC
2
O
4
. The compound looks like colorless crystals, does not dissolve in water, and forms crystalline hydrates.

The oxalate phosphites are chemical compounds containing oxalate and phosphite anions. They are also called oxalatophosphites or phosphite oxalates. Oxalate phosphates can form metal organic framework compounds.

<span class="mw-page-title-main">History of the lithium-ion battery</span> Overview of the events of the development of lithium-ion battery

This is a history of the lithium-ion battery.

Oxalate sulfates are mixed anion compounds containing oxalate and sulfate. They are mostly transparent, and any colour comes from the cations.

References

  1. Whittingham, M. Stanley (2004). "Lithium Batteries and Cathode Materials". Chemical Reviews. 104 (10): 4271–4302. doi:10.1021/cr020731c. PMID   15669156.
  2. Zavalij, Peter Y.; Yang, Shoufeng; Whittingham, M. Stanley (2003). "Structures of potassium, sodium and lithium bis(oxalato)borate salts from powder diffraction data". Acta Crystallographica Section B Structural Science. 59 (6): 753–759. doi:10.1107/S0108768103022602. PMID   14634252.