Locata Corporation

Last updated

Locata Corporation is a privately held technology company headquartered in Canberra, Australia, with a fully owned subsidiary in Las Vegas, Nevada. Locata has invented a local positioning system that can either replace or augment Global Positioning System (GPS) signals when they are blocked, jammed or unreliable. Government, commercial and other organizations use Locata to determine accurate positioning as a local backup to GPS.

Contents

History

David Small and Nunzio Gambale started work on the initial Locata concepts in 1994 and founded Locata as a company in 1997. As of December 2013, the company has been granted 122 patents around their positioning technology.

Products

LocataNet

A LocataNet is a ground-based local positioning system that provides positioning information which is indistinguishable from GPS to an appropriately configured receiver. The LocataNet achieves this without the satellites, atomic clocks or ground support structure required by traditional GPS satellite-based systems.

To create a LocataNet, LocataLite radio transceivers are deployed around a defined area. These devices collectively function like [1] a grounded version of a GPS satellite constellation, transmitting radiolocation signals that Locata receivers use to generate a positioning solution, outputting latitude, longitude and altitude, using trilateration in the same way as a traditional GPS receiver. LocataLites can be designed to transmit at any practical frequency or power level. The first commercially deployed designs operate in the same ISM band as Wi-Fi, and each LocataLite generally covers an area of up to 10 kilometers in radius in open environments.

LocataNets provide all of the Position, Navigation and Time (PNT) functions provided by a GPS satellite constellation, but in a local area, such as an open-cut mine, harbor, military range or other area. This allows operators to set up controlled positioning networks to locate, automate and direct objects with centimeter-level accuracy. [2] Locata’s duplication of PNT is made possible by the company's patented nanosecond-accurate TimeLoc synchronization technology.

VRay

The VRay is an 80-element spherical antenna that provides precise positioning in dense urban environments and indoors where traditional GNSS receivers are susceptible to large multipath errors. [3] By switching on each element for just over one microsecond, the VRay correlator design in a Locata receiver creates virtual beams which mitigate multipath effects by focusing on the direct received signal and filtering out multipath bounces. Because the VRay can sweep many beams simultaneously around an area it also determines the angle and strength of received signals and this information is used to derive the precise 3D attitude of the receiver platform as well.

In a partnership with the U.S. Air Force Institute of Technology (AFIT), the VRay is being developed for use with GPS receivers as part of a Co-operative Research and Development Agreement (CRADA) signed in April 2013. [4] AFIT will design and test several GPS-based variants of Locata-patented antenna and correlator technology to develop the VRay for military GPS use cases. [5]

Partners

Hexagon, provider of design, measurement and visualization technologies, is the first company to integrate Locata's terrestrial technology within their Leica Geosystems subsidiary's GPS-GLONASS-Galileo-BeiDou receivers. [6]

Deployments

Military

Locata has been awarded a multi-year sole-source contract [7] with the United States Air Force 746th Test Squadron (746 TS), to deploy a LocataNet and provide positioning information when GPS is jammed across a 2,500 square mile area of the White Sands Missile Range in New Mexico. TMC Design, a certified Locata Technology Integrator (LTI) has been let the contract to design, integrate, install and test Locata’s Non-GPS Based Positioning System (NGBPS) at the White Sands Missile Range location. [8]

Before the contract was granted, the USAF proved through independent testing that the LocataNet delivers accuracy of eight inches or less to aircraft up to 35 miles away. [9] Locata's NGBPS system will provide the 746 TS with enhanced validation capabilities in GPS denied environments while operating mobile and airborne position, navigation and timing (PNT) equipment and navigation warfare (NAVWAR) systems. [10]

Locata is the core component for the USAF's Ultra High Accuracy Reference System (UHARS) which will be deployed at White Sands in 2014 to improve performance of military systems in GPS-denied environments. UHARS is described by the USAF as the new "gold standard truth system for the increasingly demanding test and evaluation of future navigation and navigation warfare systems for the U.S. Department of Defense". [11]

Mining

In partnership with Leica Geosystems, the first commercial LocataNet is deployed at Newmont’s Boddington Gold Mine (BGM) in Western Australia. [12] In this environment, Locata’s technology provides positioning for automation of mining machines as the pit gets deeper and traditional satellite-based GPS coverage becomes unreliable because fewer satellites are in view in the pit, particularly near the mine’s pit walls.

Automotive

The Insurance Institute for Highway Safety (IIHS), in partnership with Perrone Robotics, [13] in December 2013 completed the installation of phase 1 of a two-stage Locata network as the first portion of a $30 million upgrade to the Vehicle Research Center (VRC). Locata is the sole-source of positioning information for the precision robotics control required by the VRC for the U.S. testing of next-generation vehicle collision avoidance systems. [14] As part of the upgrade, VRC researchers are installing new robotic and high-precision positioning technology for both their outdoor track and 300-by-700 foot indoor testing area.

See also

Related Research Articles

<span class="mw-page-title-main">Global Positioning System</span> American satellite-based radio navigation service

The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radio navigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite systems (GNSS) that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephonic or Internet reception, though these technologies can enhance the usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although the United States government created, controls and maintains the GPS system, it is freely accessible to anyone with a GPS receiver.

<span class="mw-page-title-main">Galileo (satellite navigation)</span> Global navigation satellite system

Galileo is a global navigation satellite system (GNSS) that went live in 2016, created by the European Union through the European Space Agency (ESA), operated by the European Union Agency for the Space Programme (EUSPA), headquartered in Prague, Czechia, with two ground operations centres in Fucino, Italy, and Oberpfaffenhofen, Germany. The €10 billion project is named after the Italian astronomer Galileo Galilei. One of the aims of Galileo is to provide an independent high-precision positioning system so European political and military authorities do not have to rely on the US GPS, or the Russian GLONASS systems, which could be disabled or degraded by their operators at any time. The use of basic (lower-precision) Galileo services is free and open to everyone. A fully encrypted higher-precision service is available for free to government-authorized users. Galileo is intended to provide horizontal and vertical position measurements within 1 m precision. Galileo is also to provide a new global search and rescue (SAR) function as part of the MEOSAR system.

<span class="mw-page-title-main">Loran-C</span> Radio navigation system

Loran-C is a hyperbolic radio navigation system that allows a receiver to determine its position by listening to low frequency radio signals that are transmitted by fixed land-based radio beacons. Loran-C combined two different techniques to provide a signal that was both long-range and highly accurate, features that had been incompatible. Its disadvantage was the expense of the equipment needed to interpret the signals, which meant that Loran-C was used primarily by militaries after it was introduced in 1957.

<span class="mw-page-title-main">BeiDou</span> Chinese satellite navigation system

The BeiDou Navigation Satellite System is a Chinese satellite navigation system. It consists of two separate satellite constellations. The first BeiDou system, officially called the BeiDou Satellite Navigation Experimental System and also known as BeiDou-1, consisted of three satellites which, beginning in 2000, offered limited coverage and navigation services, mainly for users in China and neighboring regions. BeiDou-1 was decommissioned at the end of 2012. The second generation of the system, officially called the BeiDou Navigation Satellite System (BDS) and also known as COMPASS or BeiDou-2, became operational in China in December 2011 with a partial constellation of 10 satellites in orbit. Since December 2012, it has been offering services to customers in the Asia-Pacific region. Within the region, BeiDou is more accurate than GPS.

<span class="mw-page-title-main">Assisted GNSS</span> System to improve the time-to-first-fix of a GNSS receiver

Assisted GNSS (A-GNSS) is a GNSS augmentation system that often significantly improves the startup performance—i.e., time-to-first-fix (TTFF)—of a global navigation satellite system (GNSS). A-GNSS works by providing the necessary data to the device via a radio network instead of the slow satellite link, essentially "warming up" the receiver for a fix. When applied to GPS, it is known as assisted GPS or augmented GPS. Other local names include A-GANSS for Galileo and A-Beidou for BeiDou.

<span class="mw-page-title-main">Satellite navigation</span> Use of satellite signals for geo-spatial positioning

A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). As of 2023, four global systems are operational: the United States’s Global Positioning System (GPS), Russia's Global Navigation Satellite System (GLONASS), China's BeiDou Navigation Satellite System, and the European Union's Galileo.

GIOVE, or Galileo In-Orbit Validation Element, is the name for two satellites built for the European Space Agency (ESA) to test technology in orbit for the Galileo positioning system.

<span class="mw-page-title-main">Local-area augmentation system</span> All-weather aircraft landing system

The local-area augmentation system (LAAS) is an all-weather aircraft landing system based on real-time differential correction of the GPS signal. Local reference receivers located around the airport send data to a central location at the airport. This data is used to formulate a correction message, which is then transmitted to users via a VHF Data Link. A receiver on an aircraft uses this information to correct GPS signals, which then provides a standard instrument landing system (ILS)-style display to use while flying a precision approach. The FAA has stopped using the term LAAS and has transitioned to the International Civil Aviation Organization (ICAO) terminology of ground-based augmentation system (GBAS). While the FAA has indefinitely delayed plans for federal GBAS acquisition, the system can be purchased by airports and installed as a Non-Federal navigation aid.

<span class="mw-page-title-main">Quasi-Zenith Satellite System</span> Navigation satellites

The Quasi-Zenith Satellite System (QZSS), also known as Michibiki (みちびき), is a four-satellite regional satellite navigation system and a satellite-based augmentation system developed by the Japanese government to enhance the United States-operated Global Positioning System (GPS) in the Asia-Oceania regions, with a focus on Japan. The goal of QZSS is to provide highly precise and stable positioning services in the Asia-Oceania region, compatible with GPS. Four-satellite QZSS services were available on a trial basis as of 12 January 2018, and officially started on 1 November 2018. A satellite navigation system independent of GPS is planned for 2023 with seven satellites. In May 2023 it was announced that the system would expand to eleven satellites.

A positioning system is a system for determining the position of an object in space. One of the most well-known and commonly used positioning systems is the Global Positioning System (GPS).

Augmentation of a global navigation satellite system (GNSS) is a method of improving the navigation system's attributes, such as precision, reliability, and availability, through the integration of external information into the calculation process. There are many such systems in place, and they are generally named or described based on how the GNSS sensor receives the external information. Some systems transmit additional information about sources of error, others provide direct measurements of how much the signal was off in the past, while a third group provides additional vehicle information to be integrated in the calculation process.

<span class="mw-page-title-main">GPS Block III</span> Current generation of GPS satellites

GPS Block III consists of the first ten GPS III satellites, which will be used to keep the Navstar Global Positioning System operational. Lockheed Martin designed, developed and manufactured the GPS III Non-Flight Satellite Testbed (GNST) and all ten Block III satellites. The first satellite in the series was launched in December 2018.

Global Navigation Satellite System (GNSS) receivers, using the GPS, GLONASS, Galileo or BeiDou system, are used in many applications. The first systems were developed in the 20th century, mainly to help military personnel find their way, but location awareness soon found many civilian applications.

<span class="mw-page-title-main">Septentrio</span>

Septentrio N.V. is a designer and manufacturer of high-end multi-frequency GNSS receivers. Its main target is to provide GNSS receiver boards and modules for further system integration by Original Equipment Manufacturers (OEMs). Septentrio's core technology is used in various professional fields such as land and airborne surveying, mobile mapping, machine control, precision agriculture, mining, transport, offshore applications, construction, timing and geodesy etc.

<span class="mw-page-title-main">Satellite navigation device</span> Device that can calculate its geographical position based on satellite information

A satellite navigation device, satnav device or satellite navigation receiver is a user equipment that uses one or more of several global navigation satellite systems (GNSS) to calculate the device's geographical position and provide navigational advice. Depending on the software used, the satnav device may display the position on a map, as geographic coordinates, or may offer routing directions.

<span class="mw-page-title-main">UNSW School of Surveying and Geospatial Engineering</span>

The UNSW School of Surveying and Geospatial Engineering (SAGE), part of the UNSW Faculty of Engineering, was founded in 1970 and disestablished in 2013.

A software GNSS receiver is a Global Navigation Satellite System (GNSS) receiver that has been designed and implemented using software-defined radio.

Inside GNSS (IG) is an international controlled circulation trade magazine and website owned by Gibbons Media and Research LLC. It covers space-based positioning, navigation and timing (PNT) technology for engineers, designers, and policy-makers of global navigation satellite systems (GNSS). In the United States, GNSS is identified mainly with the government-operated Navstar Global Positioning System (GPS). InsideGNSS.com is the complimentary website of online news, events, digital newsletters, and webinars, and archived magazine articles.

NextNav, Inc. is the developer of a 3D geolocation service known as Metropolitan Beacon System (MBS), a wide area location and timing technology designed to provide services in areas where GPS or other satellite location signals cannot be reliably received. MBS consumes significantly less power than GPS and includes high-precision altitude. In the United States, NextNav operates its MBS network over its spectrum licenses in the 920-928 MHz band. The company went public on Nasdaq in October 2021 with a merger with special-purpose acquisition company Spartacus Acquisition Corporation.

Washington Yotto Ochieng is a Kenyan academic who is Head of the Department of Civil and Environmental Engineering at Imperial College London. Previously, he was Head of the Centre for Transport Studies and Co-Director of the Institute for Security Science and Technology(ISST) together with Deeph Chana. Ochieng is a Senior Security Science Fellow in ISST. He also serves as Director of the Engineering Geomatics Group and Chair of Positioning and Navigation Systems.

References