Long delayed echo

Last updated

Long delayed echoes (LDEs) are radio echoes which return to the sender several seconds after a radio transmission has occurred. Delays of longer than 2.7 seconds are considered LDEs. [1] [2] LDEs are considered anomalous and have a number of proposed scientific origins.

Contents

History

These echoes were first observed in 1927 by civil engineer and amateur radio operator Jørgen Hals from his home near Oslo, Norway. [3] Hals had repeatedly observed an unexpected second radio echo with a significant time delay after the primary radio echo ended. Unable to account for this strange phenomenon, he wrote a letter to Norwegian physicist Carl Størmer, explaining the event:

At the end of the summer of 1927 I repeatedly heard signals from the Dutch short-wave transmitting station PCJJ at Eindhoven. At the same time as I heard these I also heard echoes. I heard the usual echo which goes round the Earth with an interval of about 1/7 of a second as well as a weaker echo about three seconds after the principal echo had gone. When the principal signal was especially strong, I suppose the amplitude for the last echo three seconds later, lay between 1/10 and 1/20 of the principal signal in strength. From where this echo comes I cannot say for the present, I can only confirm that I really heard it. [4]

Physicist Balthasar van der Pol [5] helped Hals and Stormer investigate the echoes, but due to the sporadic nature of the echo events and variations in time-delay, did not find a suitable explanation. [6]

Long delayed echoes have been heard sporadically from the first observations in 1927 and up to the present day.

Five hypotheses

Shlionskiy lists 15 possible natural explanations in two groups: reflections in outer space, and reflections within the Earth's magnetosphere. [7] [8] Vidmar and Crawford suggest five of them are the most likely. [9] Sverre Holm, professor of signal processing at the University of Oslo details those five; [10] in summary,

Signals may pass the ionosphere and then be conducted in the magnetosphere out to a distance of several Earth radii over to the opposite hemisphere where they will be reflected on top of the ionosphere. The round-trip time varies with the geomagnetic latitude of the transmitter and is typically in the 140–300 ms range. The further north the station, the larger the delay. Due to the short delay, this cannot be considered to be a real long-delayed echo. For completeness it is still included here.

Radio waves of frequency less than about 7 MHz can become trapped in magnetic field-aligned ionization ducts with L values (distance from the center of the Earth to the field line at the magnetic equator) less than about 4. These waves after being trapped can propagate to the opposite hemisphere where they become reflected in the topside ionosphere. They can return along the duct, leave it, and propagate to the receiver. [12]

"Goodacre [13] [14] reports that he pointed his antenna towards the horizon and received his own 28 MHz signal delayed by up to about 9 seconds.... His measurement implies travel up to 65 rounds around the earth." Probably the upper frequency limit for such effects.
The most popular current theory is that the radio signals are trapped between two ionized layers in the atmosphere and then are guided around the world many times over until they fall out of a gap in the bottom layer. (Ducting propagation between air layers in the lower atmosphere is a well-understood phenomenon. See Radio propagation.)
Investigated experimentally by Crawford et al., they recorded echoes with delays up to 40 seconds at 5–12 MHz. [9] [15]

The signals from two separated transmitters T1 and T2, T2 transmitting CW or quasi-CW signals, interact nonlinearly in the ionosphere or magnetosphere. If the wave vector and frequency of the forced oscillation at the difference frequency of the two signals satisfies the dispersion relation for electrostatic waves, such waves would exist and begin to propagate. This wave could grow in amplitude due to wave-particle interaction. At a later time it could interact with the CW signal and propagate to T1. [16]

Freyman [17] did experiments at 9.9 MHz and detected several thousand echoes of delay up to 16 seconds at times when solar plasma probably entered the magnetosphere.
It could explain amateur VHF/UHF echoes. Hans Rasmussen found echoes delayed by 4.6 seconds at 1296 MHz, [18] and Yurek recorded a 5.75 second delay at 432 MHz. [19]

Alternative hypotheses

Some believe that the aurora activity that follows a solar storm is the source of LDEs.

Still others believe that LDEs are double EME (EMEME) reflections, i.e. the signal is reflected by the Moon and that reflected signal is reflected by the Earth back to the Moon and reflected again by the Moon back to the Earth.

When discussing the use of automated probes as a potential means of contact with extraterrestrial civilizations, American physicist Ronald Bracewell proposed that such probes might try to attract attention by sending back to us our own signals, citing the long delayed echoes as a possible case. [20] This concept was expanded upon by Duncan Lunan, [1] and also addressed by Holm. [10]

Deception

Volker Grassmann writing in VHF Communications noted the possibility of individuals hoaxing LDEs, saying, "Attempts at deception can in no case be ruled out, and it is to be feared that less serious radio amateurs contribute to deliberate falsification.... Short transmissions using different frequencies are a relatively simple procedure for excluding potential troublemakers." [6] To reduce the possibilities of errors or hoaxes a worldwide logging system has been developed. [21]

See also

Notes

  1. 1 2 ARRL: Stan Horzepa, Radio Ghosts (dead link. use https://web.archive.org/web/20031105155129/http://www.arrl.org/news/features/2003/10/31/1/)
  2. ARRL: Stan Horzepa,Long-Delayed Echoes Again (dead link. use https://web.archive.org/web/20091112202151/http://www.arrl.org/news/features/2007/07/06/01/)
  3. Alv Egeland; William J. Burke (20 October 2012). Carl Størmer: Auroral Pioneer. Springer Science & Business Media. pp. 103–. ISBN   978-3-642-31457-5.
  4. Carl Stormer, "Short Wave Echoes and the Aurora Borealis," Nature, 122, 681, (1928)
  5. Balthus van der Pol, "Short Wave Echoes and the Aurora Borealis," Nature, 122, 878-879 (1928)
  6. 1 2 V. Grassmann, Long-delayed radio echoes, Observations and interpretations, VHF Communications, vol. 2, pp. 109-116, 1993.
  7. Sverre Holm summary, Shlionskiy's 15 possible explanations for Long Delayed Echoes
  8. A. G. Shlionskiy, "Radio echos with multisecond delays," Telecommunications. and Radio Engineering, Vol 44, No. 12, pp. 48–51, December 1989.
  9. 1 2 R. J. Vidmar and F. W. Crawford, "Long-delayed radio echoes: Mechanisms and observations," Journal of Geophysical Research, vol. 90, no. A2, pp. 1523–1530, February 1985.
  10. 1 2 Sverre Holm, The Five Most Likely Explanations for Long Delayed Echoes
  11. Sverre Holm, Unusual HF Propagation Phenomena - MDE
  12. [Muldrew, D. B., Generation of long delay echoes, Journal of Geophysical Research, 84, 5199–5215, 1979; Villard Jr., G. O. (W6QYT), D. B. Muldrew and F. W. Waxham (K7DS), The magnetospheric echo box -- a type of long-delayed echo explained, QST, 11-14, October, 1980]
  13. A. K. Goodacre (VE3HX), "Observations of long-delayed echoes on 28 MHz," QST, March 1980, pp. 14–16.
  14. A. K. Goodacre (VE3HX), "Some observations of long-delay wireless echoes on the 28-MHz amateur band," Journal of Geophysical Research, Vol. 85, No. A5, pp. 2329–2334, May 1980.
  15. F. W. Crawford, D. M. Sears, R. L. Bruce, "Possible observations and mechanism of very long delayed radio echoes," Journal of Geophysical Research, Space Physics, vol. 75, no. 34, pp. 7326–7332, Dec. 1970.
  16. [Muldrew, D. B., Generation of long delay echoes, Journal of Geophysical Research, 84, 5199–5215, 1979.
  17. R. W. Freyman, "Measurements of long delayed radio echoes in the auroral zone," Geophysical Research Letters, Vol. 8, No. 4, pp. 385–388, April 1981.
  18. H. L. Rasmussen (OZ9CR), "Ghost echoes on the Earth-Moon path," Nature, Vol. 257, p. 36, September 4, 1975.
  19. J. Yurek (K3PGP), “Echoes: An amateur observation and a professional reply,” QST, 62, pp. 35–36, May 1978.
  20. Bracewell, R. N. (1960). "Communications from Superior Galactic Communities". Nature . 186 (4726): 670–671. Bibcode:1960Natur.186..670B. doi:10.1038/186670a0. S2CID   4222557.
  21. Long Delayed Echo detection automated

Related Research Articles

<span class="mw-page-title-main">Ionosphere</span> Ionized part of Earths upper atmosphere

The ionosphere is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on Earth. It also affects GPS signals that travel through this layer.

<span class="mw-page-title-main">Atmospheric duct</span> Horizontal layer that propagates electromagnetic radiation

In telecommunications, an atmospheric duct is a horizontal layer in the lower atmosphere in which the vertical refractive index gradients are such that radio signals are guided or ducted, tend to follow the curvature of the Earth, and experience less attenuation in the ducts than they would if the ducts were not present. The duct acts as an atmospheric dielectric waveguide and limits the spread of the wavefront to only the horizontal dimension.

<span class="mw-page-title-main">High-frequency Active Auroral Research Program</span> Project to analyze the ionosphere

The High-frequency Active Auroral Research Program (HAARP) is a University of Alaska Fairbanks program which researches the ionosphere – the highest, ionized part of Earth's atmosphere.

<span class="mw-page-title-main">Geomagnetic storm</span> Disturbance of the Earths magnetosphere

A geomagnetic storm, also known as a magnetic storm, is temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave.

<span class="mw-page-title-main">Medium frequency</span> The range 300-3000 kHz of the electromagnetic spectrum

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometers. Frequencies immediately below MF are denoted as low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

<span class="mw-page-title-main">Whistler (radio)</span> Very low frequency EM waves generated by lightning

A whistler is a very low frequency (VLF) electromagnetic (radio) wave generated by lightning. Frequencies of terrestrial whistlers are 1 kHz to 30 kHz, with maximum frequencies usually at 3 kHz to 5 kHz. Although they are electromagnetic waves, they occur at audio frequencies, and can be converted to audio using a suitable receiver. They are produced by lightning strikes where the impulse travels along the Earth's magnetic field lines from one hemisphere to the other. They undergo dispersion of several kHz due to the slower velocity of the lower frequencies through the plasma environments of the ionosphere and magnetosphere. Thus they are perceived as a descending tone which can last for a few seconds. The study of whistlers categorizes them into Pure Note, Diffuse, 2-Hop, and Echo Train types.

<span class="mw-page-title-main">Sporadic E propagation</span> Type of radio propagation

Sporadic E is an unusual form of radio propagation using a low level of the Earth's ionosphere that normally does not refract radio waves.

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for amateur radio communications, international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

<span class="mw-page-title-main">Skywave</span> Propagation of radio waves beyond the radio horizon.

In radio communication, skywave or skip refers to the propagation of radio waves reflected or refracted back toward Earth from the ionosphere, an electrically charged layer of the upper atmosphere. Since it is not limited by the curvature of the Earth, skywave propagation can be used to communicate beyond the horizon, at intercontinental distances. It is mostly used in the shortwave frequency bands.

The 2-meter amateur radio band is a portion of the VHF radio spectrum that comprises frequencies stretching from 144 MHz to 148 MHz in International Telecommunication Union region (ITU) Regions 2 and 3 and from 144 MHz to 146 MHz in ITU Region 1 . The license privileges of amateur radio operators include the use of frequencies within this band for telecommunication, usually conducted locally with a line-of-sight range of about 100 miles (160 km).

Earth–Moon–Earth communication (EME), also known as Moon bounce, is a radio communications technique that relies on the propagation of radio waves from an Earth-based transmitter directed via reflection from the surface of the Moon back to an Earth-based receiver.

<span class="mw-page-title-main">Ionosonde</span> Radar for the ionosphere

An ionosonde, or chirpsounder, is a special radar for the examination of the ionosphere. The basic ionosonde technology was invented in 1925 by Gregory Breit and Merle A. Tuve and further developed in the late 1920s by a number of prominent physicists, including Edward Victor Appleton. The term ionosphere and hence, the etymology of its derivatives, was proposed by Robert Watson-Watt.

Non-line-of-sight (NLOS) radio propagation occurs outside of the typical line-of-sight (LOS) between the transmitter and receiver, such as in ground reflections. Near-line-of-sight conditions refer to partial obstruction by a physical object present in the innermost Fresnel zone.

Amateur radio frequency allocation is done by national telecommunication authorities. Globally, the International Telecommunication Union (ITU) oversees how much radio spectrum is set aside for amateur radio transmissions. Individual amateur stations are free to use any frequency within authorized frequency ranges; authorized bands may vary by the class of the station license.

<span class="mw-page-title-main">Radio atmospheric signal</span> Broadband electromagnetic impulse

A radio atmospheric signal or sferic is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges. Sferics may propagate from their lightning source without major attenuation in the Earth–ionosphere waveguide, and can be received thousands of kilometres from their source. On a time-domain plot, a sferic may appear as a single high-amplitude spike in the time-domain data. On a spectrogram, a sferic appears as a vertical stripe that may extend from a few kHz to several tens of kHz, depending on atmospheric conditions.

The Earth–ionosphere waveguide refers to the phenomenon in which certain radio waves can propagate in the space between the ground and the boundary of the ionosphere. Because the ionosphere contains charged particles, it can behave as a conductor. The earth operates as a ground plane, and the resulting cavity behaves as a large waveguide.

This is an index to articles about terms used in discussion of radio propagation.

The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere - the convection field-. Its general direction is from dawn to dusk. The co-rotating thermal plasma within the inner magnetosphere drifts orthogonal to that field and to the geomagnetic field Bo. The generation process is not yet completely understood. One possibility is viscous interaction between solar wind and the boundary layer of the magnetosphere (magnetopause). Another process may be magnetic reconnection. Finally, a hydromagnetic dynamo process in the polar regions of the inner magnetosphere may be possible. Direct measurements via satellites have given a fairly good picture of the structure of that field. A number of models of that field exists.

One way of outlining the subject of radio science is listing the topics associated with it by authoritative bodies.

The 8 meter band (40 MHz) is at present the lowest portion of the very high frequency (VHF) radio spectrum allocated to amateur radio use. The term refers to the average signal wavelength of 8 meters.

References