MGST3

Last updated
MGST3
Identifiers
Aliases MGST3 , GST-III, microsomal glutathione S-transferase 3
External IDs OMIM: 604564 MGI: 1913697 HomoloGene: 3327 GeneCards: MGST3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004528

NM_025569
NM_029392

RefSeq (protein)

NP_004519

NP_079845

Location (UCSC) Chr 1: 165.63 – 165.66 Mb Chr 1: 167.2 – 167.22 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Microsomal glutathione S-transferase 3 is an enzyme that in humans is encoded by the MGST3 gene. [5] [6]

Contents

The MAPEG (Membrane-Associated Proteins in Eicosanoid and Glutathione metabolism) family consists of six human proteins, several of which are involved the production of leukotrienes and prostaglandin E, important mediators of inflammation. This gene encodes an enzyme that catalyzes the conjugation of leukotriene A4 and reduced glutathione to produce leukotriene C4. This enzyme also demonstrates glutathione-dependent peroxidase activity towards lipid hydroperoxides. [6]

Model organisms

Model organisms have been used in the study of MGST3 function. A conditional knockout mouse line, called Mgst3tm1a(KOMP)Wtsi [11] [12] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute. [13] [14] [15]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [9] [16] Twenty five tests were carried out on mutant mice but no significant abnormalities were observed. [9]

Related Research Articles

<span class="mw-page-title-main">Leukotriene C4 synthase</span> Protein-coding gene in the species Homo sapiens

Leukotriene C4 synthase is an enzyme that in humans is encoded by the LTC4S gene.

<span class="mw-page-title-main">PRDX6</span> Protein-coding gene in the species Homo sapiens

Peroxiredoxin-6 is a protein that in humans is encoded by the PRDX6 gene. It is a member of the peroxiredoxin family of antioxidant enzymes.

<span class="mw-page-title-main">GPX2 (gene)</span> Protein-coding gene in the species Homo sapiens

Glutathione peroxidase 2 is an enzyme that in humans is encoded by the GPX2 gene.

<span class="mw-page-title-main">Microsomal glutathione S-transferase 1</span> Protein-coding gene in the species Homo sapiens

Microsomal glutathione S-transferase 1 is an enzyme that in humans is encoded by the MGST1 gene.

<span class="mw-page-title-main">MAPEG family</span>

In molecular biology the MAPEG family of proteins are a group of membrane associated proteins with highly divergent functions. Included are the 5-lipoxygenase-activating protein, leukotriene C4 synthase, which catalyzes the production of leukotriene C4 (LTC4) from leukotriene A4 (LTA4), and microsomal glutathione S-transferase II (GST-II), which also produces LTC4 from LTA4.

<span class="mw-page-title-main">UBAP1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-associated protein 1 is a protein that in humans is encoded by the UBAP1 gene.

<span class="mw-page-title-main">NIPA1</span> Protein-coding gene in humans

Non-imprinted in Prader-Willi/Angelman syndrome region protein 1 is a protein that in humans is encoded by the NIPA1 gene. This gene encodes a potential transmembrane protein which functions either as a receptor or transporter molecule, possibly as a magnesium transporter. This protein is thought to play a role in nervous system development and maintenance. Alternative splice variants have been described, but their biological nature has not been determined. Mutations in this gene have been associated with the human genetic disease autosomal dominant spastic paraplegia 6.

<span class="mw-page-title-main">IFITM3</span> Protein-coding gene in the species Homo sapiens

Interferon-induced transmembrane protein 3 (IFITM3) is a protein that in humans is encoded by the IFITM3 gene. It plays a critical role in the immune system's defense against Swine Flu, where heightened levels of IFITM3 keep viral levels low, and the removal of IFITM3 allows the virus to multiply unchecked. This observation has been further advanced by a recent study from Paul Kellam's lab that shows that a single nucleotide polymorphism in the human IFITM3 gene purported to increase influenza susceptibility is overrepresented in people hospitalised with pandemic H1N1. The prevalence of this mutation is thought to be approximately 1/400 in European populations.

<span class="mw-page-title-main">SNF8</span> Protein-coding gene in the species Homo sapiens

Vacuolar-sorting protein SNF8 is a protein that in humans is encoded by the SNF8 gene.

<span class="mw-page-title-main">MGST2</span> Protein-coding gene in the species Homo sapiens

Microsomal glutathione S-transferase 2 is an enzyme that in humans is encoded by the MGST2 gene.

<span class="mw-page-title-main">SLC35F6</span> Protein-coding gene in the species Homo sapiens

SLC35F6 is a protein that in humans is encoded by the SLC35F6 gene. The orthologue in mice is 4930471M23Rik.

<span class="mw-page-title-main">AGPAT3</span> Protein-coding gene in the species Homo sapiens

1-acyl-sn-glycerol-3-phosphate acyltransferase gamma is an enzyme that in humans is encoded by the AGPAT3 gene. The protein encoded by this gene is an acyltransferase that converts lysophosphatidic acid into phosphatidic acid, which is the second step in the de novo phospholipid biosynthetic pathway. The encoded protein may be an integral membrane protein. Two transcript variants encoding the same protein have been found for this gene.

<span class="mw-page-title-main">PUS7L</span> Protein-coding gene in the species Homo sapiens

Pseudouridylate synthase 7 homolog-like protein is an enzyme that in humans is encoded by the PUS7L gene.

<span class="mw-page-title-main">MPGES-1</span> Protein-coding gene in the species Homo sapiens

Microsomal prostaglandin E synthase-1 (mPGES-1) or Prostaglandin E synthase is an enzyme that in humans is encoded by the PTGES gene.

<span class="mw-page-title-main">APPL2</span> Protein-coding gene in the species Homo sapiens

DCC-interacting protein 13-beta is a protein that in humans is encoded by the APPL2 gene.

<span class="mw-page-title-main">TWF1</span> Protein-coding gene in the species Homo sapiens

Twinfilin-1 is a protein that in humans is encoded by the TWF1 gene. This gene encodes twinfilin, an actin monomer-binding protein conserved from yeast to mammals. Studies of the mouse counterpart suggest that this protein may be an actin monomer-binding protein, and its localization to cortical G-actin-rich structures may be regulated by the small GTPase RAC1.

<span class="mw-page-title-main">COQ9</span> Protein-coding gene in humans

Ubiquinone biosynthesis protein COQ9, mitochondrial, also known as coenzyme Q9 homolog (COQ9), is a protein that in humans is encoded by the COQ9 gene.

<span class="mw-page-title-main">PRPSAP2</span> Protein-coding gene in the species Homo sapiens

Phosphoribosyl pyrophosphate synthetase-associated protein 2 is a protein that in humans is encoded by the PRPSAP2 gene.

<span class="mw-page-title-main">CCDC57</span> Protein-coding gene in humans

Coiled-coil domain-containing protein 57 is a protein that in humans is encoded by the CCDC57 gene.

<span class="mw-page-title-main">CAPRIN2</span> Protein-coding gene in humans

caprin family member 2, also known as CAPRIN2, is a human gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000143198 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026688 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Jakobsson PJ, Mancini JA, Riendeau D, Ford-Hutchinson AW (Oct 1997). "Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities". J Biol Chem. 272 (36): 22934–9. doi: 10.1074/jbc.272.36.22934 . PMID   9278457.
  6. 1 2 "Entrez Gene: MGST3 microsomal glutathione S-transferase 3".
  7. "Salmonella infection data for Mgst3". Wellcome Trust Sanger Institute.
  8. "Citrobacter infection data for Mgst3". Wellcome Trust Sanger Institute.
  9. 1 2 3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  10. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  11. "International Knockout Mouse Consortium".
  12. "Mouse Genome Informatics".
  13. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  14. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi: 10.1038/474262a . PMID   21677718.
  15. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  16. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi: 10.1186/gb-2011-12-6-224 . PMC   3218837 . PMID   21722353.

Further reading