MIRA procedure

Last updated

MIRA (Minimally Invasive Reconstructive Angiography ) is a multidisciplinary and complementary method for treating many chronic diseases. The MIRA Procedure is a result of combining efforts from different medical fields developed in the University of Chicago in 1992. It basically consists in medically grafting live rejuvenated tissue in the form of autologous adipose adult stem cells to a damaged organ in order to restore it and improve its function. This method is currently approved by the U.S. Food and Drug Administration (FDA).

Contents

History

The MIRA Procedure originated as a result of combining medical innovations and was developed as a multidisciplinary technique for applications in a wide range of medical fields. In other words, this procedure was not developed for a specific application, it is a compilation from data and experience retrieved through years of research as well as practice that have been put together to create a new alternative to treat many diseases and other applications.

In 1989 Dr. Christoph Broelsch performed the first successful living donor liver transplantation in the University of Chicago. [1] Nearly two years old Alyssa Smith was the first to receive part of a living’s person liver donated in this case by her mother. [2] The remarkable results improved current prognosis on patients who required a liver transplant but even then there were far from meeting the demand and many hundreds to this date die waiting for a donor. This procedure has also sparked some controversial and legal issues for enticing organ trafficking and its practice is currently restricted in some countries.

In 1992, at the University of Chicago Dr. Fushih Pan is amongst the first to attempt repairing damaged organ tissue by tissue grafting, but with little success due to technological limitations for keeping the grafted tissue live and functional. Dr. Fushih Pan later becomes much more involved in the steps that followed in order to develop the MIRA procedure.

In 1995, the University of Pennsylvania caught the first glimpse of regenerative medicine after successfully regenerating cranial bone. [3] During the same year these results led to determination pressure of adequate tissue growth in cases with anophthalmia. [4]

In 1998 Dr. J. Peter Rubin from the University of Pittsburgh developed a basic science research program in the biology of adipose derived stem cells and serves as co-director of the Adipose Stem Cell Center at the University of Pittsburgh. [5] More recently he has determined the safety on fat derived stem cells for breast reconstruction after mastectomy as long as there is no evidence of cancer. [6] [7]

In the year 2002 the UCLA under direction of Dr. Marc H. Hedrick M.D. [8] started research on possible applications of Adult stem cells generating positive results. [9]

Opting for research on Adult stem cells rather than Embryonic stem cells resulted amidst the stem cell controversy that involve diverse ethical concerns and religious groups, most prominently the Catholic Church. Embryonic stem cells till this day are frowned upon many for the implication of the destruction of human embryos, yet the progress of adult stem cells has produced more promising results.

After the introduction of the subject of stem cells into the mainstream it was of utmost importance to keep the public aware of the difference of Embryonic Stem Cells and Adult stem cells. To help clarify the matter, in 2006 the Pope of the Catholic Church openly stated the encouragement on research on Adult stem cells. [10] [11]


In 2008, after years of research the University of Pittsburgh and the UCLA come together sharing their progress in order to the develop a viable stem cell treatment.

Dr. Kotaro Yoshimura was one of the first to implement an alternative to breast augmentation by safely grafting fat stem cells in 2006. [12] [13] [14] [15] In 2009 at the University of Tokyo he was able to determine the adequate pressure for grafting ADSC more effectively, paving the road to diverse applications for the future. After this breakthrough the engraftment rate was improved even further thanks to the development of a nanoscale shielding using biomaterials approved by the U.S. Food and Drug Administration (FDA). With this, Dr. Fushih Pan was able to successfully develop a safe and reliable medical procedure now known as the MIRA Procedure.

The concept of the MIRA procedure can be considered more off as a minimally invasive tissue graft which function restoring capabilities work under the principles of Adult stem cells. The treatments potential use lies in improving patients with chronic diseases such as heart and liver failure as well as those with neurodegenerative diseases like Alzheimer and multiple sclerosis. In 2010, the MIRA procedure spawned highly efficient alternatives to some operations in the field of cosmetics. The MIRA Lift is now an alternative for a face lift that rejuvenates the face's skin cells in order to produce more collagen for better and more natural results. Currently an alternative for breast augmentation surgery is also being implemented. All this is done in a minimally invasive way that involves almost no downtime to the patient.

Clinical procedure (simplified)

The MIRA procedure consists of the following steps:

  1. Harvest the resting progenitor cells- Bone marrow and/or adipose tissue are collected through liposuction by a reconstructive surgeon which are then harvested by a MIRA specialist.
  2. Activate them intro-operatively- The cells capable of restoration are usually in a resting state. Through a proprietary method, these cells are awakened and activated into their growth stage. This allows the cells to replicate themselves and eventually increase the number of the arm force.
  3. Package the activated cells with a protective shield- Activated progenitor cells are very fragile after being harvested and manipulated, making their engraftment rate less than 10%. Therefore, experts on the field developed a porous nanoscale shielding using biomaterials that are FDA approved that drastically increases engraftment rate and improve the results of organ function.
  4. Delivery to the damaged tissue- Lastly, all of the packages are delivered to the nearest location to the injured site of the organ using a high-resolution angiogram operated by a high-skilled reconstructive surgeon for approaching, identifying, and isolating the feeder arterioles. This step is further assisted by an interventional radiologist for a more precise application.

Applications

The MIRA Procedure has numerous applications for different fields and many more are still in development:

Clinical applications

Cosmetic applications

Advantages

Medical field:

Cosmetic field:

Limitations or complications

Patients who are not physically adequate to undergo a liposuction may not be subject for a MIRA procedure.

A drawback for the breast augmentation surgery is that it only provides half the extra volume when compared to current implants.

Future

Currently the MIRA Procedure is most well known as an alternative to cosmetic surgery but has proved to be successful in restoring health to patients with chronic heart disease and cirrhotic liver. Soon enough further research will be employed to develop an adequate treatment for certain types of cancer as well as neuro-degenerative diseases with more efficacy.

The MIRA Procedure has proven to be a significant alternative to Embryonic Stem Cell treatments which still are under development. The procedure also has some advantages over Embryonic Stem Cell treatments due to its simplicity and therefore its financial cost.

Related Research Articles

<span class="mw-page-title-main">Stem cell</span> Undifferentiated biological cells that can differentiate into specialized cells

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

<span class="mw-page-title-main">Plastic surgery</span> Medical surgical specialty

Plastic surgery is a surgical specialty involving the restoration, reconstruction, or alteration of the human body. It can be divided into two main categories: reconstructive surgery and cosmetic surgery. Reconstructive surgery covers a wide range of specialties, including craniofacial surgery, hand surgery, microsurgery, and the treatment of burns. This category of surgery focuses on restoring a body part or improving its function. In contrast, cosmetic surgery focuses solely on improving the physical appearance of the body. A comprehensive definition of plastic surgery has never been established, because it has no distinct anatomical object and thus overlaps with practically all other surgical specialties. An essential feature of plastic surgery is that it involves the treatment of conditions that require or may require tissue relocation skills.

Tissue expansion is a technique used by plastic, maxillofacial and reconstructive surgeons to cause the body to grow additional skin, bone, or other tissues. Other biological phenomena such as tissue inflammation can also be considered expansion.

<span class="mw-page-title-main">Graft-versus-host disease</span> Medical condition

Graft-versus-host disease (GvHD) is a syndrome, characterized by inflammation in different organs. GvHD is commonly associated with bone marrow transplants and stem cell transplants.

<span class="mw-page-title-main">Breast augmentation</span> Surgical procedure

Breast augmentation and augmentation mammoplasty is a cosmetic surgery procedure, which uses breast-implants and/ or fat-graft mammoplasty technique to increase the size, change the shape, and alter the texture of the breasts. Although in some cases augmentation mammoplasty is applied to correct congenital defects of the breasts and the chest wall in other cases it is performed purely for cosmetic reasons.

Allotransplant is the transplantation of cells, tissues, or organs to a recipient from a genetically non-identical donor of the same species. The transplant is called an allograft, allogeneic transplant, or homograft. Most human tissue and organ transplants are allografts.

<span class="mw-page-title-main">Corneal transplantation</span> Surgical procedure of repairing corneal tissue to treat corneal blindness

Corneal transplantation, also known as corneal grafting, is a surgical procedure where a damaged or diseased cornea is replaced by donated corneal tissue. When the entire cornea is replaced it is known as penetrating keratoplasty and when only part of the cornea is replaced it is known as lamellar keratoplasty. Keratoplasty simply means surgery to the cornea. The graft is taken from a recently deceased individual with no known diseases or other factors that may affect the chance of survival of the donated tissue or the health of the recipient.

<span class="mw-page-title-main">Regenerative medicine</span> Field of medicine involved in regenerating tissues

Regenerative medicine deals with the "process of replacing, engineering or regenerating human or animal cells, tissues or organs to restore or establish normal function". This field holds the promise of engineering damaged tissues and organs by stimulating the body's own repair mechanisms to functionally heal previously irreparable tissues or organs.

<span class="mw-page-title-main">Cell therapy</span> Therapy in which cellular material is injected into a patient

Cell therapy is a therapy in which viable cells are injected, grafted or implanted into a patient in order to effectuate a medicinal effect, for example, by transplanting T-cells capable of fighting cancer cells via cell-mediated immunity in the course of immunotherapy, or grafting stem cells to regenerate diseased tissues.

Autotransplantation is the transplantation of organs, tissues, or even particular proteins from one part of the body to another in the same person.

Transfusion-associated graft-versus-host disease (TA-GvHD) is a rare complication of blood transfusion, in which the immunologically competent donor T lymphocytes mount an immune response against the recipient's lymphoid tissue. These donor lymphocytes engraft, recognize recipient cells as foreign and mount an immune response against recipient tissues. Donor lymphocytes are usually identified as foreign and destroyed by the recipient's immune system. However, in situations where the recipient is severely immunocompromised, or when the donor and recipient HLA type is similar, the recipient's immune system is not able to destroy the donor lymphocytes. This can result in transfusion associated graft-versus-host disease. This is in contrast with organ/tissue transplant associated GvHD, where matching HLA reduces the incident of the complication.

Transplantable organs and tissues may refer to both organs and tissues that are relatively often transplanted, as well as organs and tissues which are relatively seldom transplanted. In addition to this it may also refer to possible-transplants which are still in the experimental stage.

In tissue engineering, neo-organ is the final structure of a procedure based on transplantation consisting of endogenous stem/progenitor cells grown ex vivo within predesigned matrix scaffolds. Current organ donation faces the problems of patients waiting to match for an organ and the possible risk of the patient's body rejecting the organ. Neo-organs are being researched as a solution to those problems with organ donation. Suitable methods for creating neo-organs are still under development. One experimental method is using adult stem cells, which use the patients own stem cells for organ donation. Currently this method can be combined with decellularization, which uses a donor organ for structural support but removes the donors cells from the organ. Similarly, the concept of 3-D bioprinting organs has shown experimental success in printing bioink layers that mimic the layer of organ tissues. However, these bioinks do not provide structural support like a donor organ. Current methods of clinically successful neo-organs use a combination of decellularized donor organs, along with adult stem cells of the organ recipient to account for both the structural support of a donor organ and the personalization of the organ for each individual patient to reduce the chance of rejection.

<span class="mw-page-title-main">Decellularization</span>

Decellularization is the process used in biomedical engineering to isolate the extracellular matrix (ECM) of a tissue from its inhabiting cells, leaving an ECM scaffold of the original tissue, which can be used in artificial organ and tissue regeneration. Organ and tissue transplantation treat a variety of medical problems, ranging from end organ failure to cosmetic surgery. One of the greatest limitations to organ transplantation derives from organ rejection caused by antibodies of the transplant recipient reacting to donor antigens on cell surfaces within the donor organ. Because of unfavorable immune responses, transplant patients suffer a lifetime taking immunosuppressing medication. Stephen F. Badylak pioneered the process of decellularization at the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. This process creates a natural biomaterial to act as a scaffold for cell growth, differentiation and tissue development. By recellularizing an ECM scaffold with a patient’s own cells, the adverse immune response is eliminated. Nowadays, commercially available ECM scaffolds are available for a wide variety of tissue engineering. Using peracetic acid to decellularize ECM scaffolds have been found to be false and only disinfects the tissue.

Facial Autologous Muscular Injection is also known as Fat Autograft Muscular Injection, as Autologous Fat Injection, as Micro-lipoinjection, as Fat Transfer and as Facial Autologous Mesenchymal Integration, abbreviated as FAMI. The technique is a non-incisional pan-facial rejuvenation procedure using the patient's own stem cells from fat deposits. FAMI is an Adult stem cell procedure used to address the loss of volume in the face due to aging or surgery repair in restoring facial muscles, bone surfaces and very deep fat pads. The procedure involves removing adult stem cells of fatty tissue from lower body, and refining it to be able to re-inject living adipose stem cells into specific areas of the face without incision. FAMI is an outpatient procedure and an alternative to artificial fillers, blepharoplasty or various face lifts. The procedure does not require general anesthesia and risks of an allergic reaction are minimal due to the use of the patient's own tissue used as the facial injection.

Regeneration in humans is the regrowth of lost tissues or organs in response to injury. This is in contrast to wound healing, or partial regeneration, which involves closing up the injury site with some gradation of scar tissue. Some tissues such as skin, the vas deferens, and large organs including the liver can regrow quite readily, while others have been thought to have little or no capacity for regeneration following an injury.

<span class="mw-page-title-main">Shimon Slavin</span> Israeli professor of medicine

Shimon Slavin is an Israeli professor of medicine. He pioneered immunotherapy mediated by allogeneic donor lymphocytes and innovative methods for stem cell transplantation to cure hematological malignancies and solid tumors. He also used hematopoietic stem cells to induce transplantation tolerance to bone marrow and organ allografts.

<span class="mw-page-title-main">Stem cell fat grafting</span>

Stem cellfat grafting is the autotransplantation of adipose-derived stem cells (ADSCs) extracted from fat-abundant donor sites to other areas such as the face, breast, and hip to reconstruct the operative areas into desirable shapes. ADSCs are multipotent stem cells found in adipose tissues, displaying similar differentiation potentials to bone marrow-derived mesenchymal stem cells (BM-MSCs).

Fat transfer, also known as fat graft, lipomodelling, or fat injections, is a surgical process in which a person's own fat is transferred from one area of the body to another area. The major aim of this procedure is to improve or augment the area that has irregularities and grooves. Carried out under either general anesthesia or local anesthesia, the technique involves 3 main stages: fat harvesting, fat processing and fat injection.

Foetal brain cell graft is a surgical procedure that can be used as a regenerative treatment for various neurological conditions, but was mainly explored and used specifically for treating Parkinson's disease (PD). A standardised procedure is followed: the cells are usually obtained from a 7–8 weeks old foetus and the collected cells undergo testing to examine whether they are free from infectious agents and safe for transplantation. It is found that this procedure results in an overall improvement in motor functions and a reduction in reliance on medication for PD patients.

References

  1. Millis JM, Cronin DC, Brady LM, et al. (July 2000). "Primary Living-Donor Liver Transplantation at the University of Chicago". Ann. Surg. 232 (1): 104–11. doi:10.1097/00000658-200007000-00015. PMC   1421114 . PMID   10862202.
  2. "Pediatric Living-Donor Liver Transplant: Alyssa's Story - Comer Children's Hospital at the University of Chicago". Uchicagokidshospital.org. 1989-11-26. Retrieved 2010-12-16.
  3. Reedy, Brian K.; Pan, Fushih; Kim, Won Seok; Gannon, Francis H.; Krasinskas, Alyssa; Bartlett, Scott P. (1999). "Properties of Coralline Hydroxyapatite and Expanded Polytetrafluoroethylene Membrane in the Immature Craniofacial Skeleton". Plastic and Reconstructive Surgery. 103 (1). Ovid Technologies (Wolters Kluwer Health): 20–26. doi:10.1097/00006534-199901000-00005. ISSN   0032-1052.
  4. Reedy, Brian K.; Pan, Fushih; Kim, Won Seok; Bartlett, Scott P. (1999). "The Direct Effect of Intraorbital Pressure on Orbital Growth in the Anophthalmic Piglet". Plastic and Reconstructive Surgery. 104 (3). Ovid Technologies (Wolters Kluwer Health): 713–718. doi:10.1097/00006534-199909010-00015. ISSN   0032-1052.
  5. "J. Peter Rubin, M.D. - Regenerative Medicine at the McGowan Institute". Mirm.pitt.edu. Retrieved 2010-12-16.
  6. "Fat Stem Cells Safe for Breast Reconstruction when Cancer is Dormant, Says Pitt Team – UPMC, Pittsburgh, PA, USA". Upmc.com. 2010-09-15. Archived from the original on 2011-07-16. Retrieved 2010-12-16.
  7. "News:Regenerative Medicine and Breast Reconstruction - Regenerative Medicine at the McGowan Institute". Mirm.pitt.edu. 2010-09-17. Retrieved 2010-12-16.
  8. "Marc H. Hedrick Profile - Forbes.com". People.forbes.com. Archived from the original on 2011-10-08. Retrieved 2010-12-16.
  9. "Archived copy" (PDF). Archived from the original (PDF) on 2011-07-15. Retrieved 2010-12-04.{{cite web}}: CS1 maint: archived copy as title (link)
  10. [ permanent dead link ]
  11. "Archived copy" (PDF). Archived from the original (PDF) on 2010-12-24. Retrieved 2010-12-04.{{cite web}}: CS1 maint: archived copy as title (link)
  12. "Web Master -Cosmetic Medicine in Japan". Cosmetic-medicine.jp. Retrieved 2010-12-16.
  13. Pearson, Helen (2004-02-09). "Fat used to boost breasts". Nature. doi:10.1038/news040202-19. ISSN   0028-0836.
  14. Rundle, Rhonda L. (August 19, 2008). "Stem Cells and Breast Surgery" (PDF). The Wall Street Journal. Yokohama, Japan. p. A12. Retrieved 7 July 2024.
  15. "Stem Cells from Fat Tissue Demonstrate Early Success in Reconstructive Surgery". Newswise.com. 2006-10-24. Retrieved 2010-12-16.