MPT8080

Last updated
MPT8080 "Microtutor"
Date invented1977 (1977)
Invented byDr. Ravi Raizada
ManufacturerLimrose Electronics
Introduced1977;47 years ago (1977)
TypeMicroprocessor trainer
Processor Intel 8080A
Memory1 kilobyte
PortsProprietary input and output ports

The MPT8080 "Microtutor" is a microprocessor trainer based on the Intel 8080 processor, developed by Limrose Electronics. It was designed in the mid-1970s to assist in the understanding of the then-new microprocessors.

Contents

Users of the MPT8080 enter assembly language programs via binary switches or a hexadecimal keypad. While the code executes, the user can observe what is happening on the address, data, and control signals of the microprocessor. The MPT8080 acts like a simulator, in that code can be stepped through one instruction—or each cycle of each individual instruction—at a time to observe what is happening.

The MPT8080 has simple input and output, consisting of eight LEDs and eight switches. The input port allows code to sense the state of external switches, whilst the output port can display information on one of its eight LEDs. The input and output ports also have connectors, allowing them to be connected to external signals through accessory patch kits, thus allowing the MPT8080 to control and monitor other circuitry.

History

Initially, a Motorola 6800-based trainer was developed alongside the Intel 8080–based model, but due to technical and operational issues the 6800 trainer was abandoned.

As recently as 2012, the MPT8080 remained in academic use at King's College London, as part of a course in practical physics. [1] As of 2011, the MPT8080 was still available for sale.

MPT8080 Version 1

MPT8080 version 1 Mpt8080 2.jpg
MPT8080 version 1
version 1 pcb Mpt8080 7.jpg
version 1 pcb

The initial version of the MPT8080 was designed by Dr. Ravi Raizada, the chief executive officer of Limrose Electronics. It was first marketed in 1977.[ citation needed ]

Details of version 1 of the microtutor are included in the book : Small Systems Computer Sourcebook, author: J C Boonham [2]

This version used eight binary switches and a load button for program entry.

MPT8080 Version 2

MPT8080 version 2 - hex keypad MPT8080K-1.png
MPT8080 version 2 - hex keypad

The second version, the MPT8080 K-1, and introduced during 1979, was designed by Stephen Pickering and replaced the binary switch input with a 16-key hexadecimal keypad. Although more than half of the trainer's circuitry was redesigned for this version, it remained compatible with the first version. A trace mode was added to allow single-cycle execution as well as machine cycles; this allowed the user to quickly step through code until reaching the portion of the program in which the user was interested. Latest UK price £495+vat (source: Limrose U.K.Price List 1st Sept 2010).

Features of the MPT8080 K-1
Processor Intel 8080A
MemoryOne kilobyte: Two 2114 static 1K × 4-bit RAM chips
State machine Based on 7400 series TTL chip; controls data entry and program execution
InputKeypad20 keys:
Dallas/National Semiconductor 20-key keyboard decoder
Control switches
MMLE / Run
Manual Memory Load and Examine—set the operating mode to normal code execution or data entry
SI/SC
Single Instruction or Single Cycle for run mode; only relevant when in SSTP mode
SSTP / CONT
selects Single-Step or Continuous execution mode
Output Program counter 16 LEDs
Data bus Eight LEDs
Status signalsEight LEDs
Output portEight LEDs

Operating the MPT8080

Programs are entered in the MPT8080 in data entry mode ("MMLE"). Each byte of the program is entered, either by toggling the binary switches and pressing the load button, or by entering the byte on the hexadecimal keypad. The program can then be executed.

The program can control the eight output port lines, turning the associated LEDs on or off.

By selecting single-step and single-cycle mode and stepping through a program with the step button, the user can see exactly what happens during every instruction cycle, observing the program counter, data bus and control signals on their corresponding LEDs.

By selecting single-instruction mode, rather than single-cycle mode, each press of the step button will execute a complete instruction, rather than a single cycle. This is useful for quickly advancing to a specific address.

The input/output ports can be used to read external signals and drive output devices like motors and buzzers with little or no additional hardware.

The system is programmed directly in 8080 machine code:

Address       Code           Instruction                     Comments 0000          DB 00          IN  0                           Read from switches 0002          D3 00          OUT 0                           write to LEDs 0004          C3 00 00       JMP 0                           return to start of code 

See also

Related Research Articles

<span class="mw-page-title-main">Intel 8080</span> 8-bit microprocessor

The Intel 8080 ("eighty-eighty") is the second 8-bit microprocessor designed and manufactured by Intel. It first appeared in April 1974 and is an extended and enhanced variant of the earlier 8008 design, although without binary compatibility. The initial specified clock rate or frequency limit was 2 MHz, with common instructions using 4, 5, 7, 10, or 11 cycles. As a result, the processor is able to execute several hundred thousand instructions per second. Two faster variants, the 8080A-1 and 8080A-2, became available later with clock frequency limits of 3.125 MHz and 2.63 MHz respectively. The 8080 needs two support chips to function in most applications: the i8224 clock generator/driver and the i8228 bus controller. It is implemented in N-type metal–oxide–semiconductor logic (NMOS) using non-saturated enhancement mode transistors as loads thus demanding a +12 V and a −5 V voltage in addition to the main transistor–transistor logic (TTL) compatible +5 V.

<span class="mw-page-title-main">Intel 8086</span> 16-bit microprocessor

The 8086 is a 16-bit microprocessor chip designed by Intel between early 1976 and June 8, 1978, when it was released. The Intel 8088, released July 1, 1979, is a slightly modified chip with an external 8-bit data bus, and is notable as the processor used in the original IBM PC design.

<span class="mw-page-title-main">Zilog Z80</span> 8-bit microprocessor

The Z80 is an 8-bit microprocessor introduced by Zilog as the startup company's first product. The Z80 was conceived by Federico Faggin in late 1974 and developed by him and his 11 employees starting in early 1975. The first working samples were delivered in March 1976, and it was officially introduced on the market in July 1976. With the revenue from the Z80, the company built its own chip factories and grew to over a thousand employees over the following two years.

<span class="mw-page-title-main">Intel 8008</span> 8-bit microprocessor

The Intel 8008 is an early 8-bit microprocessor capable of addressing 16 KB of memory, introduced in April 1972. The 8008 architecture was designed by Computer Terminal Corporation (CTC) and was implemented and manufactured by Intel. While the 8008 was originally designed for use in CTC's Datapoint 2200 programmable terminal, an agreement between CTC and Intel permitted Intel to market the chip to other customers after Seiko expressed an interest in using it for a calculator.

<span class="mw-page-title-main">Intel 8085</span> 8-bit microprocessor by Intel

The Intel 8085 ("eighty-eighty-five") is an 8-bit microprocessor produced by Intel and introduced in March 1976. It is the last 8-bit microprocessor developed by Intel.

<span class="mw-page-title-main">Intel 4040</span> 4-bit microprocessor introduced in 1974 by Intel

The Intel 4040 microprocessor was the successor to the Intel 4004, introduced in 1974. The 4040 employed a 10 μm silicon gate enhancement-load PMOS technology, was made up of 3,000 transistors and could execute approximately 62,000 instructions per second.

In-circuit emulation (ICE) is the use of a hardware device or in-circuit emulator used to debug the software of an embedded system. It operates by using a processor with the additional ability to support debugging operations, as well as to carry out the main function of the system. Particularly for older systems, with limited processors, this usually involved replacing the processor temporarily with a hardware emulator: a more powerful although more expensive version. It was historically in the form of bond-out processor which has many internal signals brought out for the purpose of debugging. These signals provide information about the state of the processor.

<span class="mw-page-title-main">NEC V20</span> 16-bit microprocessor introduced by NEC in 1984

The NEC V20 is a microprocessor that was designed and produced by NEC. It is both pin compatible and object code compatible with the Intel 8088, with an instruction set architecture (ISA) similar to that of the Intel 80188 with some extensions. The V20 was introduced in March 1984.

<span class="mw-page-title-main">RCA 1802</span> Early microprocessor

The COSMAC is an 8-bit microprocessor family introduced by RCA. It is historically notable as the first CMOS microprocessor. The first production model was the two-chip CDP1801R and CDP1801U, which were later combined into the single-chip CDP1802. The 1802 represented the majority of COSMAC production, and today the entire line is known simply as the RCA 1802.

<span class="mw-page-title-main">COSMAC ELF</span>

The COSMAC Elf was an RCA 1802 microprocessor-based computer described in a series of construction articles in Popular Electronics magazine in 1976 and 1977. Through the back pages of electronics magazines, both Netronics and Quest Electronics offered low-priced, enhanced kits that were based on this design. The system was a very early single-board personal computer. It was operated without built-in ROMs and programs were entered directly with help of the CPU integrated DMA using 8 toggle switches and an Input push button.

<span class="mw-page-title-main">Fairchild F8</span> 8-bit microprocessor first shipped in 1975

The Fairchild F8 is an 8-bit microprocessor system from Fairchild Semiconductor, announced in 1974 and shipped in 1975. The original processor family included four main 40-pin integrated circuits (ICs); the 3850 CPU which was the arithmetic logic unit, the 3851 Program Storage Unit (PSU) which contained 1 KB of program ROM and handled instruction decoding, and the optional 3852 Dynamic Memory Interface (DMI) or 3853 Static Memory Interface (SMI) to control additional RAM or ROM holding the user programs or data. The 3854 DMA was another optional system that added direct memory access into the RAM controlled by the 3852.

<span class="mw-page-title-main">Intel 8253</span> Programmable interval timer IC

The Intel 8253 and 8254 are programmable interval timers (PITs), which perform timing and counting functions using three 16-bit counters.

<span class="mw-page-title-main">Signetics 2650</span> 8-bit microprocessor

The Signetics 2650 was an 8-bit microprocessor introduced in July 1975. According to Adam Osborne's book An Introduction to Microprocessors Vol 2: Some Real Products, it was "the most minicomputer-like" of the microprocessors available at the time. A combination of missing features and odd memory access limited its appeal, and the system saw little use in the market.

A source-to-source translator, source-to-source compiler, transcompiler, or transpiler is a type of translator that takes the source code of a program written in a programming language as its input and produces an equivalent source code in the same or a different programming language. A source-to-source translator converts between programming languages that operate at approximately the same level of abstraction, while a traditional compiler translates from a higher level programming language to a lower level programming language. For example, a source-to-source translator may perform a translation of a program from Python to JavaScript, while a traditional compiler translates from a language like C to assembly or Java to bytecode. An automatic parallelizing compiler will frequently take in a high level language program as an input and then transform the code and annotate it with parallel code annotations or language constructs.

<span class="mw-page-title-main">History of general-purpose CPUs</span>

The history of general-purpose CPUs is a continuation of the earlier history of computing hardware.

<span class="mw-page-title-main">Intel 8255</span> Programmable Peripheral Interface chip

The Intel 8255 Programmable Peripheral Interface (PPI) chip was developed and manufactured by Intel in the first half of the 1970s for the Intel 8080 microprocessor. The 8255 provides 24 parallel input/output lines with a variety of programmable operating modes.

Each time Intel launched a new microprocessor, they simultaneously provided a system development kit (SDK) allowing engineers, university students, and others to familiarise themselves with the new processor's concepts and features. The SDK single-board computers allowed the user to enter object code from a keyboard or upload it through a communication port, and then test run the code. The SDK boards provided a system monitor ROM to operate the keyboard and other interfaces. Kits varied in their specific features but generally offered optional memory and interface configurations, a serial terminal link, audio cassette storage, and EPROM program memory. Intel's Intellec development system could download code to the SDK boards.

<span class="mw-page-title-main">Single-board microcontroller</span> Microcontroller built onto a single printed circuit board

A single-board microcontroller is a microcontroller built onto a single printed circuit board. This board provides all of the circuitry necessary for a useful control task: a microprocessor, I/O circuits, a clock generator, RAM, stored program memory and any necessary support ICs. The intention is that the board is immediately useful to an application developer, without requiring them to spend time and effort to develop controller hardware.

The NEC μCOM series is a series of microprocessors and microcontrollers manufactured by NEC in the 1970s and 1980s. The initial entries in the series were custom-designed 4 and 16-bit designs, but later models in the series were mostly based on the Intel 8080 and Zilog Z80 8-bit designs, and later, the Intel 8086 16-bit design. Most of the line was replaced in 1984 by the NEC V20, an Intel 8088 clone.

<span class="mw-page-title-main">MIKBUG</span> ROM monitor from Motorola

MIKBUG is a ROM monitor from Motorola for the Motorola 6800 8-bit microprocessor. It is intended to "be used to debug and evaluate a user's program".

References

  1. Department of Physics (2008-10-06). "Machine code programming". Second Year Physics Laboratory Manual 2008/2009 (PDF). University of London. p. 54. Retrieved 2011-03-03.
  2. Boonham, J C (1978). Small Systems Computer Sourcebook. The Rococo Press Limited. ISBN   9780470262955.
Notes

Further reading