Macrodiversity

Last updated

In the field of wireless communication, macrodiversity [1] [2] is a kind of space diversity scheme using several receiver or transmitter antennas for transferring the same signal. The distance between the transmitters is much longer than the wavelength, as opposed to microdiversity where the distance is in the order of or shorter than the wavelength.

Contents

In a cellular network or a wireless LAN, macro-diversity implies that the antennas are typically situated in different base station sites or access points. Receiver macro-diversity is a form of antenna combining, and requires an infrastructure that mediates the signals from the local antennas or receivers to a central receiver or decoder. Transmitter macro-diversity may be a form of simulcasting, where the same signal is sent from several nodes. If the signals are sent over the same physical channel (e.g. the channel frequency and the spreading sequence), the transmitters are said to form a single-frequency network—a term used especially in the broadcasting world.

The aim is to combat fading and to increase the received signal strength and signal quality in exposed positions in between the base stations or access points. Macro diversity may also facilitate efficient multicast services, where the same frequency channel can be used for all transmitters sending the same information. The diversity scheme may be based on transmitter (downlink) macro-diversity and/or receiver (uplink) macro-diversity.

Examples

Forms

The baseline form of macrodiversity is called single-user macrodiversity. In this form, single user which may have multiple antennas, communicates with several base stations. Therefore, depending on the spatial degree of freedom (DoF) of the system, user may transmit or receive multiple independent data streams to/from base stations in the same time and frequency resource.

In next more advanced form of macrodiversity, multiple distributed users communicate with multiple distributed base stations in the same time and frequency resource. This form of configuration has been shown to utilize available spatial DoF optimally and thus increasing the cellular system capacity and user capacity considerably.

Mathematical description

Typical multi-user macrodiversity uplink communication scenario with three base stations (BS) and two mobile stations (MS). All BSs are connected to a back-haul processing unit (BPU). Macrodiversity mimo mac 2013.jpg
Typical multi-user macrodiversity uplink communication scenario with three base stations (BS) and two mobile stations (MS). All BSs are connected to a back-haul processing unit (BPU).

The macrodiversity multi-user MIMO uplink communication system considered here consists of distributed single antenna users and distributed single antenna base stations (BS). Following the well established narrow band flat fading MIMO system model, input-output relationship can be given as

where and are the receive and transmit vectors, respectively, and and are the macrodiversity channel matrix and the spatially uncorrelated AWGN noise vector, respectively. The power spectral density of AWGN noise is assumed to be . The th element of , represents the fading coefficient (see Fading) of the th constituent link which in this particular case, is the link between th user and the th base station. In macrodiversity scenario,

,

where is called the average link gain giving average link SNR of . The macrodiversity power profile matrix [2] can thus be defined as

The original input-output relationship may be rewritten in terms of the macrodiversity power profile and so-called normalized channel matrix, , as

.

where is the element-wise square root of , and the operator, , represents Hadamard multiplication (see Hadamard product). The th element of , , satisfies the condition given by

.

It has been shown that there exists a functional link between the permanent of macrodiversity power profile matrix, and the performance of multi-user macrodiversity systems in fading. [2] Although it appears as if the macrodiversity only manifests itself in the power profile, systems that rely on macrodiversity will typically have other types of transmit power constraints (e.g., each element of has a limited average power) and different sets of coordinating transmitters/receivers when communicating with different users. [4] Note that the input-output relationship above can be easily extended to the case when each transmitter and/or receiver have multiple antennas.

See also

Related Research Articles

Code-division multiple access Channel access method used by various radio communication technologies

Code-division multiple access (CDMA) is a channel access method used by various radio communication technologies. CDMA is an example of multiple access, where several transmitters can send information simultaneously over a single communication channel. This allows several users to share a band of frequencies. To permit this without undue interference between the users, CDMA employs spread spectrum technology and a special coding scheme.

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission and a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

Fading

In wireless communications, fading is variation of the attenuation of a signal with various variables. These variables include time, geographical position, and radio frequency. Fading is often modeled as a random process. A fading channel is a communication channel that experiences fading. In wireless systems, fading may either be due to multipath propagation, referred to as multipath-induced fading, weather, or shadowing from obstacles affecting the wave propagation, sometimes referred to as shadow fading.

Single-frequency network

A single-frequency network or SFN is a broadcast network where several transmitters simultaneously send the same signal over the same frequency channel.

Transmit diversity is radio communication using signals that originate from two or more independent sources that have been modulated with identical information-bearing signals and that may vary in their transmission characteristics at any given instant.

In wireless communications, channel state information (CSI) refers to known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of, for example, scattering, fading, and power decay with distance. The method is called Channel estimation. The CSI makes it possible to adapt transmissions to current channel conditions, which is crucial for achieving reliable communication with high data rates in multiantenna systems.

In telecommunications, a diversity scheme refers to a method for improving the reliability of a message signal by using two or more communication channels with different characteristics. Diversity is mainly used in radio communication and is a common technique for combatting fading and co-channel interference and avoiding error bursts. It is based on the fact that individual channels experience different levels of fading and interference. Multiple versions of the same signal may be transmitted and/or received and combined in the receiver. Alternatively, a redundant forward error correction code may be added and different parts of the message transmitted over different channels. Diversity techniques may exploit the multipath propagation, resulting in a diversity gain, often measured in decibels.

Radio resource management (RRM) is the system level management of co-channel interference, radio resources, and other radio transmission characteristics in wireless communication systems, for example cellular networks, wireless local area networks, wireless sensor systems, and radio broadcasting networks. RRM involves strategies and algorithms for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. The objective is to utilize the limited radio-frequency spectrum resources and radio network infrastructure as efficiently as possible.

Spatial multiplexing

Spatial multiplexing or space-division multiplexing is a multiplexing technique in MIMO wireless communication, fibre-optic communication and other communications technologies used to transmit independent channels separated in space.

Precoding is a generalization of beamforming to support multi-stream transmission in multi-antenna wireless communications. In conventional single-stream beamforming, the same signal is emitted from each of the transmit antennas with appropriate weighting such that the signal power is maximized at the receiver output. When the receiver has multiple antennas, single-stream beamforming cannot simultaneously maximize the signal level at all of the receive antennas. In order to maximize the throughput in multiple receive antenna systems, multi-stream transmission is generally required.

Multi-user MIMO (MU-MIMO) is a set of multiple-input and multiple-output (MIMO) technologies for multipath wireless communication, in which multiple users or terminals, each radioing over one or more antennas, communicate with one another. In contrast, single-user MIMO (SU-MIMO) involves a single multi-antenna-equipped user or terminal communicating with precisely one other similarly equipped node. Analogous to how OFDMA adds multiple-access capability to OFDM in the cellular-communications realm, MU-MIMO adds multiple-user capability to MIMO in the wireless realm.

Cooperative diversity is a cooperative multiple antenna technique for improving or maximising total network channel capacities for any given set of bandwidths which exploits user diversity by decoding the combined signal of the relayed signal and the direct signal in wireless multihop networks. A conventional single hop system uses direct transmission where a receiver decodes the information only based on the direct signal while regarding the relayed signal as interference, whereas the cooperative diversity considers the other signal as contribution. That is, cooperative diversity decodes the information from the combination of two signals. Hence, it can be seen that cooperative diversity is an antenna diversity that uses distributed antennas belonging to each node in a wireless network. Note that user cooperation is another definition of cooperative diversity. User cooperation considers an additional fact that each user relays the other user's signal while cooperative diversity can be also achieved by multi-hop relay networking systems.

In radio, cooperative multiple-input multiple-output is a technology that can effectively exploit the spatial domain of mobile fading channels to bring significant performance improvements to wireless communication systems. It is also called network MIMO, distributed MIMO, virtual MIMO, and virtual antenna arrays.

Bell Laboratories Layer Space-Time (BLAST) is a transceiver architecture for offering spatial multiplexing over multiple-antenna wireless communication systems. Such systems have multiple antennas at both the transmitter and the receiver in an effort to exploit the many different paths between the two in a highly-scattering wireless environment. BLAST was developed by Gerard Foschini at Lucent Technologies' Bell Laboratories. By careful allocation of the data to be transmitted to the transmitting antennas, multiple data streams can be transmitted simultaneously within a single frequency band — the data capacity of the system then grows directly in line with the number of antennas. This represents a significant advance on current, single-antenna systems.

MIMO Use of multiple antennas in radio

In radio, multiple-input and multiple-output, or MIMO, is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.

In wireless communication, spatial correlation is the correlation between a signal's spatial direction and the average received signal gain. Theoretically, the performance of wireless communication systems can be improved by having multiple antennas at the transmitter and the receiver. The idea is that if the propagation channels between each pair of transmit and receive antennas are statistically independent and identically distributed, then multiple independent channels with identical characteristics can be created by precoding and be used for either transmitting multiple data streams or increasing the reliability. In practice, the channels between different antennas are often correlated and therefore the potential multi antenna gains may not always be obtainable.

Zero-forcing precoding is a method of spatial signal processing by which a multiple antenna transmitters can null the multiuser interference in a multi-user MIMO wireless communication system. When the channel state information is perfectly known at the transmitter, the zero-forcing precoder is given by the pseudo-inverse of the channel matrix.

Carrier frequency offset (CFO) is one of many non-ideal conditions that may affect in baseband receiver design. In designing a baseband receiver, we should notice not only the degradation invoked by non-ideal channel and noise, we should also regard RF and analog parts as the main consideration. Those non-idealities include sampling clock offset, IQ imbalance, power amplifier, phase noise and carrier frequency offset nonlinearity.

Per-user unitary rate control (PU2RC) is a multi-user MIMO (multiple-input and multiple-output) scheme. PU2RC uses both transmission pre-coding and multi-user scheduling. By doing that, the network capacity is further enhanced than the capacity of the single-user MIMO scheme.

MIMO radar

Multiple-input multiple-output (MIMO) radar is an advanced type of phased array radar employing digital receivers and waveform generators distributed across the aperture. MIMO radar signals propagate in a fashion similar to multistatic radar. However, instead of distributing the radar elements throughout the surveillance area, antennas are closely located to obtain better spatial resolution, Doppler resolution, and dynamic range. MIMO radar may also be used to obtain low-probability-of-intercept radar properties.

References

  1. D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, W. Yu, Multi-cell MIMO cooperative networks: A new look at interference IEEE Journal on Selected Areas in Communications, vol. 28, no. 9, pp. 1380–1408, Dec. 2010.
  2. 1 2 3 4 5 D. A. Basnayaka, P. J. Smith and P. A. Martin, Performance analysis of macrodiversity MIMO systems with MMSE and ZF receivers in flat Rayleigh fading IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 2240–2251, May 2013.
  3. M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, Network coordination for spectrally efficient communications in cellular systems IEEE Wireless Communication Magazine, vol. 13, no. 4, pp. 56–61, Aug. 2006.
  4. 1 2 E. Björnson and E. Jorswieck, Optimal Resource Allocation in Coordinated Multi-Cell Systems, Foundations and Trends in Communications and Information Theory, vol. 9, no. 2–3, pp. 113–381, 2013.