Macrophage-activating factor

Last updated

A macrophage-activating factor (MAF) is a lymphokine or other receptor based signal that primes macrophages towards cytotoxicity to tumors, cytokine secretion, or clearance of pathogens. Similar molecules may cause development of an inhibitory, regulatory phenotype. A MAF can also alter the ability of macrophages to present MHC I antigen, participate in Th responses, and/or affect other immune responses. [1] [2]

Contents

MAFs act typically in combination to produce a specific phenotype. [2]

Macrophage activated phenotypes

Macrophages inherently display tissue and environment-dependent plasticity. [3] In addition, the phenotypes of the macrophages in a certain environment play a fundamental role in determining the immune activity and response within the tissue.

Depending on the combination of MAFs signaling to the macrophage, the macrophage’s activated phenotype becomes one of three major categories: classically activated, wound healing, or regulatory. Regulatory-phenotype macrophages have only recently been recognized as an important contributor to tissue microenvironments.

Tumor-associated macrophages may be any of these types, and they have been found to be important players in the tumor microenvironment. Analysis of the macrophage population and signaling in a tumor may provide useful clinical data. [2]

Clarifications on terminology

Classically activated macrophages

After receiving signaling from both IFNγ and TNF, macrophages acquire a phenotype with higher activity against both pathogens and tumor cells. They also secrete inflammatory cytokines. IFNγ signaling can initially originate from Natural Killer (NK) cells, but adaptive immune cells are required to sustain a population of classically activated macrophages.

Toll-like receptor agonists may also cause macrophage activation. [2]

Wound healing macrophages

Interleukin 4, secreted by granulocytes after tissue damage or by adaptive immune cells within a Th2 response, causes macrophages to secrete minimal amounts of pro-inflammatory cytokines and to have lower activity against intracellular pathogens. They also promote extracellular matrix synthesis via production of ornithine, via arginase; this is used as a precursor for extracellular matrix components. The overall result is a macrophage population that promotes wound healing. [2]

The specific roles macrophages play in the Th2 response are still under investigation. [2]

Regulatory macrophages

Glucocorticoids can contribute to the development of regulatory macrophages. These macrophages produce Interleukin 10 and inhibit immune system response (See below for Effect on cancer). Tumor-associated macrophages may contain a large population of regulatory macrophages. [2]

Effect on cancer

Initially, MAFs were thought to increase a macrophage’s cytotoxic response, allowing enhanced clearance of the tumor cells. However, they also have wider ranging effects. Chronic inflammation associated with activated macrophages may lead to the development of neoplasia, such as those found surrounding tuberculosis scars.

Dysregulation of macrophage activation may cause increased inflammation and eventual neoplasia. [2]

Moreover, macrophages infiltrating the tumor microenvironment can transition towards a regulatory phenotype. Regulatory macrophages produce Interleukin 10, which can inhibit cytotoxic responses of other lymphocytes to cancer cell antigens. The stromal reaction surrounding a tumor, as well as prostaglandins and hypoxia may play a role in this transition. [2]

Epithelial-mesenchymal transition has been found to be influenced by all types of macrophages, which cause both pro and anti-inflammatory responses that can promote EMT. [7]

Non-cytokine examples of macrophage-activating factors

Pathogenic antigens can bind to toll-like receptors that stimulate macrophage activation and response. Examples include heat shock proteins released during apoptosis, and bacterial lipopolysaccharide. [2]

Examples

Miscellaneous

It has been suggested that MAF can be formed by probiotic bacteria in a yoghurt medium. This probiotic mixture has been found to be helpful in various immune disturbances including ME/CFS. [1]

Related Research Articles

Immune system Biological system protecting an organism against disease

The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinters, distinguishing them from the organism's own healthy tissue. Many species have two major subsystems of the immune system. The innate immune system provides a preconfigured response to broad groups of situations and stimuli. The adaptive immune system provides a tailored response to each stimulus by learning to recognize molecules it has previously encountered. Both use molecules and cells to perform their functions.

Macrophage Type of white blood cell

Macrophages are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer cells, microbes, cellular debris, and foreign substances, which do not have proteins that are specific to healthy body cells on their surface. The process is called phagocytosis, which acts to defend the host against infection and injury.

Natural killer cell Type of cytotoxic lymphocyte

Natural killer cells, also known as NK cells or large granular lymphocytes (LGL), are a type of cytotoxic lymphocyte critical to the innate immune system that belong to the rapidly expanding family of known innate lymphoid cells (ILC) and represent 5–20% of all circulating lymphocytes in humans. The role of NK cells is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response. NK cells provide rapid responses to virus-infected cell and other intracellular pathogens acting at around 3 days after infection, and respond to tumor formation. Typically, immune cells detect the major histocompatibility complex (MHC) presented on infected cell surfaces, triggering cytokine release, causing the death of the infected cell by lysis or apoptosis. NK cells are unique, however, as they have the ability to recognize and kill stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named "natural killers" because of the notion that they do not require activation to kill cells that are missing "self" markers of MHC class 1. This role is especially important because harmful cells that are missing MHC I markers cannot be detected and destroyed by other immune cells, such as T lymphocyte cells.

Cell-mediated immunity is an immune response that does not involve antibodies. Rather, cell-mediated immunity is the activation of phagocytes, antigen-specific cytotoxic T-lymphocytes, and the release of various cytokines in response to an antigen.

Interleukin 12 Interleukin

Interleukin 12 (IL-12) is an interleukin that is naturally produced by dendritic cells, macrophages, neutrophils, and human B-lymphoblastoid cells (NC-37) in response to antigenic stimulation. IL-12 belongs to the family of interleukin-12. IL-12 family is unique in comprising the only heterodimeric cytokines, which includes IL-12, IL-23, IL-27 and IL-35. Despite sharing many structural features and molecular partners, they mediate surprisingly diverse functional effects.

Interleukin 19

Interleukin 19 (IL-19) is an immunosuppressive protein that belongs to the IL-10 cytokine subfamily.

Alveolar macrophage

An alveolar macrophage, pulmonary macrophage, is a type of macrophage, a professional phagocyte, found in the airways and at the level of the alveoli in the lungs, but separated from their walls.

Interferon type II Cytokine

Interferon type II is a family of interferons involved in immune system regulation. There is only one member of type II interferons (IFNs), known as IFN-γ. IFN-γ is a cytokine which binds to the type II IFN receptor, or the IFN-γ receptor(IFNGR), to elicit a signal within its target cell. Through cell signaling, IFN-γ plays a role in regulating the immune response of its target cell. A key signaling pathway that is activated by type II IFN is the JAK-STAT signaling pathway. IFN-γ plays an important role in both innate and adaptive immunity. Type II IFN is primarily secreted by adaptive immune cells, more specifically CD4+ T helper 1 (Th1) cells, natural killer (NK) cells, and CD8+ cytotoxic T cells. The expression of type II IFN is upregulated and downregulated by cytokines. By activating signaling pathways in cells such as macrophages, B cells, and CD8+ cytotoxic T cells, it is able to promote inflammation, antiviral or antibacterial activity, and cell proliferation and differentiation. Type II IFN is serologically different from interferon type 1, binds to different receptors, and is encoded by a separate chromosomal locus. Type II IFN has played a role in the development of cancer immunotherapy treatments due to its ability to prevent tumor growth.

Understanding of the antitumor immunity role of CD4+ T cells has grown substantially since the late 1990s. CD4+ T cells (mature T-helper cells) play an important role in modulating immune responses to pathogens and tumor cells, and are important in orchestrating overall immune responses.

T helper 17 cells (Th17) are a subset of pro-inflammatory T helper cells defined by their production of interleukin 17 (IL-17). They are related to T regulatory cells and the signals that cause Th17s to differentiate actually inhibit Treg differentiation. However, Th17s are developmentally distinct from Th1 and Th2 lineages. Th17 cells play an important role in maintaining mucosal barriers and contributing to pathogen clearance at mucosal surfaces; such protective and non-pathogenic Th17 cells have been termed as Treg17 cells.

Gamma delta T cells are T cells that have a γδ T-cell receptor (TCR) on their surface. Most T cells are αβ T cells with TCR composed of two glycoprotein chains called α (alpha) and β (beta) TCR chains. In contrast, γδ T cells have a TCR that is made up of one γ (gamma) chain and one δ (delta) chain. This group of T cells is usually less common than αβ T cells, but are at their highest abundance in the gut mucosa, within a population of lymphocytes known as intraepithelial lymphocytes (IELs).

An inflammatory cytokine or proinflammatory cytokine is a type of signaling molecule that is secreted from immune cells like helper T cells (Th) and macrophages, and certain other cell types that promote inflammation. They include interleukin-1 (IL-1), IL-6, IL-12, and IL-18, tumor necrosis factor alpha (TNF-α), interferon gamma (IFNγ), and granulocyte-macrophage colony stimulating factor (GM-CSF) and play an important role in mediating the innate immune response. Inflammatory cytokines are predominantly produced by and involved in the upregulation of inflammatory reactions.

Tumor-associated macrophages (TAMs) are a class of immune cells present in high numbers in the microenvironment of solid tumors. They are heavily involved in cancer-related inflammation. Macrophages are known to originate from bone marrow-derived blood monocytes or yolk sac progenitors, but the exact origin of TAMs in human tumors remains to be elucidated. The composition of monocyte-derived macrophages and tissue-resident macrophages in the tumor microenvironment depends on the tumor type, stage, size, and location, thus it has been proposed that TAM identity and heterogeneity is the outcome of interactions between tumor-derived, tissue-specific, and developmental signals.

Tumor microenvironment

The tumor microenvironment (TME) is the environment around a tumor, including the surrounding blood vessels, immune cells, fibroblasts, signaling molecules and the extracellular matrix (ECM). The tumor and the surrounding microenvironment are closely related and interact constantly. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells.

Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells, derived from common lymphoid progenitors (CLPs). In response to pathogenic tissue damage, ILCs contribute to immunity via the secretion of signalling molecules, and the regulation of both innate and adaptive immune cells. ILCs are primarily tissue resident cells, found in both lymphoid, and non- lymphoid tissues, and rarely in the blood. They are particularly abundant at mucosal surfaces, playing a key role in mucosal immunity and homeostasis. Characteristics allowing their differentiation from other immune cells include the regular lymphoid morphology, absence of rearranged antigen receptors found on T cells and B cells, and phenotypic markers usually present on myeloid or dendritic cells.

Immunoediting is a dynamic process that consists of immunosurveillance and tumor progression. It describes the relation between the tumor cells and the immune system. It is made up of three phases: elimination, equilibrium, and escape.

Regulatory macrophages (Mregs) represent a subset of anti-inflammatory macrophages. In general, macrophages are a very dynamic and plastic cell type and can be divided into two main groups: classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 group can further be divided into sub-groups M2a, M2b, M2c, and M2d. Typically the M2 cells have anti-inflammatory and regulatory properties and produce many different anti-inflammatory cytokines such as IL-4, IL-33, IL-10, IL-1RA, and TGF-β. M2 cells can also secrete angiogenic and chemotactic factors. These cells can be distinguished based on the different expression levels of various surface proteins and the secretion of different effector molecules.

Macrophage polarization is a process by which macrophages adopt different functional programs in response to the signals from their microenvironment. This ability is connected to their multiple roles in the organism: they are powerful effector cells of the innate immune system, but also important in removal of cellular debris, embryonic development and tissue repair.

The Immunologic Constant of Rejection (ICR), is a notion introduced by biologists to group a shared set of genes expressed in tissue destructive-pathogenic conditions like cancer and infection, along a diverse set of physiological circumstances of tissue damage or organ failure, including autoimmune disease or allograft rejection. The identification of shared mechanisms and phenotypes by distinct immune pathologies, marked as a hallmarks or biomarkers, aids in the identification of novel treatment options, without necessarily assessing patients phenomenologies individually.

Autoinflammatory diseases (AIDs) are a group of rare disorders caused by a dysfunction of the innate immune system.They are characterised by a perdiodic or chronic systemic inflammation usually without the involvement of adaptive immunity.

References

  1. 1 2 Mosser DM (February 2003). "The many faces of macrophage activation". J. Leukoc. Biol. 73 (2): 209–12. doi: 10.1189/jlb.0602325 . PMID   12554797.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mosser DM, Edwards JP (December 2008). "Exploring the full spectrum of macrophage activation". Nat. Rev. Immunol. 8 (12): 958–69. doi:10.1038/nri2448. PMC   2724991 . PMID   19029990.
  3. Giorgio S (September 2013). "Macrophages: plastic solutions to environmental heterogeneity". Inflamm. Res. 62 (9): 835–43. doi:10.1007/s00011-013-0647-7. PMID   23872927.
  4. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000). "M-1/M-2 macrophages and the Th1/Th2 paradigm". J Immunol. 164 (12): 6166–73. doi: 10.4049/jimmunol.164.12.6166 . PMID   10843666.
  5. Weisser SB, et al. (2013). Generation and characterization of murine alternatively activated macrophages. Methods Mol. Biol. Methods in Molecular Biology. Vol. 946. pp. 225–39. doi:10.1007/978-1-62703-128-8_14. ISBN   978-1-62703-127-1. PMID   23179835.
  6. Yu WG, et al. (2013). "IFN-γ-induced iNOS Expression in Mouse Regulatory Macrophages Prolongs Allograft Survival in Fully Immunocompetent Recipients". Mol. Ther. 21 (2): 409–422. doi:10.1038/mt.2012.168. PMC   3594012 . PMID   22929659.
  7. Helm O, et al. (Jan 23, 2013). "Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis". Int. J. Cancer. 135 (4): 843–61. doi:10.1002/ijc.28736. PMID   24458546.
  8. DeFilippis RA, et al. (July 2012). "CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues". Cancer Discov. 2 (9): 826–39. doi:10.1158/2159-8290.CD-12-0107. PMC   3457705 . PMID   22777768.