Tumor-associated macrophage

Last updated

Tumor-associated macrophages (TAMs) are a class of immune cells present in high numbers in the microenvironment of solid tumors. They are heavily involved in cancer-related inflammation. Macrophages are known to originate from bone marrow-derived blood monocytes (monocyte-derived macrophages) or yolk sac progenitors (tissue-resident macrophages), but the exact origin of TAMs in human tumors remains to be elucidated. [1] The composition of monocyte-derived macrophages and tissue-resident macrophages in the tumor microenvironment depends on the tumor type, stage, size, and location, thus it has been proposed that TAM identity and heterogeneity is the outcome of interactions between tumor-derived, tissue-specific, and developmental signals. [2]

Contents

Function

Although there is some debate, most evidence suggests that TAMs have a tumor-promoting phenotype. TAMs affect most aspects of tumor cell biology and drive pathological phenomena including tumor cell proliferation, tumor angiogenesis, invasion and metastasis, immunosuppression, and drug resistance. [3] [4]

Angiogenesis

Tumor angiogenesis is the process by which a tumor forms new blood vessels in order to maintain a supply of nutrients and oxygen and to grow beyond a few millimeters in size. The formation of vasculature also facilitates the escape of malignant cells into blood circulation and the onset of metastasis. One of the primary tumor-promoting mechanisms of TAMs is the secretion of potent pro-angiogenic factors. The most highly expressed and well-characterized angiogenic factor produced by TAMs is vascular endothelial growth factor A (VEGF-A). [5] TAMs accumulate in hypoxic regions of the tumor, which induces the expression of hypoxia-inducible factors (HIF-1) that regulate VEGF expression. In addition to producing VEGF-A, TAMs have been shown to modulate VEGF-A concentration through matrix metalloproteinase (MMP)-9 activity [6] and by producing WNT7B that induces endothelial cells to produce VEGF-A. [7]

In addition to VEGF-A, TAMs secrete the pro-angiogenic factors tumor necrosis factor α (TNFα), basic fibroblast growth factor, urokinase-type plasminogen activator, adrenomedullin, and semaphorin 4D. [5] Moreover, cytokines produced by TAMs induce tumor cells to produce pro-angiogenic factors, thereby working cooperatively to turn on the angiogenic switch.

A class of TAMs expressing Tie2 have been shown to induce tumor angiogenesis. [8] Tie2+ TAMs associate with blood vessels through angiopoietin-2 produced by endothelial cells and activate angiogenesis through paracrine signaling. When angiopoietin-2 is bound, these TAMs upregulate expression of more angiogenic factors, such as thymidine phosphorylase and cathepsin B. Angiopoietin-2 also causes Tie2+ TAMs to express T-cell regulating factors interleukin (IL)-10 and chemokine (C-C motif) ligand (CCL) 17; these factors limit T-cell proliferation and upregulate expansion of regulatory T cells, allowing tumor cells to evade immune responses. [9]

Tumor lymphangiogenesis is closely related to tumor angiogenesis, and there is substantial evidence that factors produced by TAMs, especially those of the VEGF family and their receptor tyrosine kinases, are responsible for this link. [10] [11] In low-oxygen regions of a solid tumor, mononuclear myeloid-derived suppressor cells (M-MDSC) quickly turn into tumor-associated macrophages. Additionally, the crosstalk between M-MDSCs and other macrophages enhance the protumor activities of TAMs. [12]

Immune suppression

One of the major functions of TAMs is suppressing the T-cell mediated anti-tumor immune response. Gene expression analysis of mouse models of breast cancer and fibrosarcoma shows that TAMs have immunosuppressive transcriptional profiles and express factors including IL-10 and transforming growth factor β (TGFβ). [13] [14] In humans, TAMs have been shown to directly suppress T cell function through surface presentation of programmed death-ligand 1 (PD-L1) in hepatocellular carcinoma [15] and B7-homologs in ovarian carcinoma, [16] which activate programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4), respectively, on T cells. In both mouse and humans, TAMs co-expressing T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) and V-domain Ig suppressor of T cell activation (VISTA) have been shown to promote immunotherapy-resistance and inhibit immunogenic cell death (ICD). [17] Inhibitory signals to PD-1 and CTLA-4 are immune checkpoints, and binding of these inhibitory receptors by their ligands prevents T cell receptor signaling, inhibits T cells cytotoxic function, and promotes T cell apoptosis. [2] [18] HIF-1α also induces TAMs to suppress T cell function through arginase-1, but the mechanism by which this occurs is not yet fully understood. [19] Recently, Siglec-15 has also been identified as an immune suppressive molecule that is solely expressed on TAMs, and could be a potential therapeutic target for cancer immunotherapy. [20]

Subtypes

TAMs have historically been described as falling into two categories: M1 and M2. M1 refers to macrophages that undergo “classical” activation by interferon-γ (IFNγ) with either lipopolysaccharide (LPS) or TNF, whereas M2 refers to macrophages that undergo “alternative” activation by IL-4. [21] M1 macrophages are seen to have a pro-inflammatory and cytotoxic (anti-tumoral) function; M2 macrophages are anti-inflammatory (pro-tumoral) and promote wound healing. However, use of the M1/M2 polarization paradigm has led to confusing terminology since M1/M2 are used to describe mature macrophages, but the activation process is complex and involves many related cells in the macrophage family. Moreover, with recent evidence that macrophage populations are tissue- and tumor-specific, [2] it has been proposed that classifying macrophages, including TAMs, as being in one of two distinct stable subsets is insufficient. [21] Rather, TAMs should be viewed as existing on a spectrum. More comprehensive classification systems that account for the dynamic nature of macrophages have been proposed, [2] but have not been adopted by the immunological research community.

Clinical significance

In many tumor types TAM infiltration level has been shown to be of significant prognostic value. TAMs have been linked to poor prognosis in breast cancer, ovarian cancer, types of glioma and lymphoma; better prognosis in colon and stomach cancers and both poor and better prognoses in lung and prostate cancers. [22] [17]

Clinically, in 128 patients with breast cancer it was found that patients with more M2 tumor-associated macrophages had higher-grade tumors, greater microvessel density, and worse overall survival. Patients with more M1 tumor-associated macrophages displayed the opposite effect. [23] [24]

As a drug target

CSF1R inhibitors have been developed as a potential route to reduce the presence of TAMs in the tumor microenvironment. [25] As of 2017, CSF1R inhibitors that are currently in early stage clinical trials include Pexidartinib, PLX7486, ARRY-382, JNJ-40346527, BLZ945, Emactuzumab, AMG820, IMC-CS4, MCS110, and Cabiralizumab. [26] [27] [28] [29] CSF1R inhibitors such as PLX3397 have also been shown to alter the distribution of TAMs throughout the tumor and promote enrichment of the classically activated M1-like phenotype. [30] [31]

Other approaches to enhance tumor response to chemotherapies that have been tested in preclinical models include blocking macrophage recruitment to the tumor site, re-polarizing TAMs, and promoting TAM activation. [32] Remaining challenges in targeting TAMs include determining whether to target depletion or repolarization in combination therapies, and for which tumor types and at what tumor stage TAM-targeted therapy is effective. [32] Re-polarization of TAMs from a M2 to M1 phenotype by drug treatments has shown the ability to control tumor growth, [33] [17] including in combination with checkpoint inhibitor therapy. [31] [17]

See also

Related Research Articles

<span class="mw-page-title-main">Angiogenesis</span> Blood vessel formation, when new vessels emerge from existing vessels

Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature mainly by processes of sprouting and splitting, but processes such as coalescent angiogenesis, vessel elongation and vessel cooption also play a role. Vasculogenesis is the embryonic formation of endothelial cells from mesoderm cell precursors, and from neovascularization, although discussions are not always precise. The first vessels in the developing embryo form through vasculogenesis, after which angiogenesis is responsible for most, if not all, blood vessel growth during development and in disease.

<span class="mw-page-title-main">Macrophage</span> Type of white blood cell

Macrophages are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris, and foreign substances, which do not have proteins that are specific to healthy body cells on their surface. This process is called phagocytosis, which acts to defend the host against infection and injury.

Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with paracrine signaling, intracrine signaling, or classical endocrine signaling.

Vascular endothelial growth factor, originally known as vascular permeability factor (VPF), is a signal protein produced by many cells that stimulates the formation of blood vessels. To be specific, VEGF is a sub-family of growth factors, the platelet-derived growth factor family of cystine-knot growth factors. They are important signaling proteins involved in both vasculogenesis and angiogenesis.

An angiogenesis inhibitor is a substance that inhibits the growth of new blood vessels (angiogenesis). Some angiogenesis inhibitors are endogenous and a normal part of the body's control and others are obtained exogenously through pharmaceutical drugs or diet.

<span class="mw-page-title-main">Angiopoietin</span> Protein family

Angiopoietin is part of a family of vascular growth factors that play a role in embryonic and postnatal angiogenesis. Angiopoietin signaling most directly corresponds with angiogenesis, the process by which new arteries and veins form from preexisting blood vessels. Angiogenesis proceeds through sprouting, endothelial cell migration, proliferation, and vessel destabilization and stabilization. They are responsible for assembling and disassembling the endothelial lining of blood vessels. Angiopoietin cytokines are involved with controlling microvascular permeability, vasodilation, and vasoconstriction by signaling smooth muscle cells surrounding vessels. There are now four identified angiopoietins: ANGPT1, ANGPT2, ANGPTL3, ANGPT4.

<span class="mw-page-title-main">MMP2</span> Protein-coding gene in the species Homo sapiens

72 kDa type IV collagenase also known as matrix metalloproteinase-2 (MMP-2) and gelatinase A is an enzyme that in humans is encoded by the MMP2 gene. The MMP2 gene is located on chromosome 16 at position 12.2.

<span class="mw-page-title-main">Cancer immunology</span> Study of the role of the immune system in cancer

Cancer immunology (immuno-oncology) is an interdisciplinary branch of biology and a sub-discipline of immunology that is concerned with understanding the role of the immune system in the progression and development of cancer; the most well known application is cancer immunotherapy, which utilises the immune system as a treatment for cancer. Cancer immunosurveillance and immunoediting are based on protection against development of tumors in animal systems and (ii) identification of targets for immune recognition of human cancer.

<span class="mw-page-title-main">PD-L1</span> Mammalian protein found in humans

Programmed death-ligand 1 (PD-L1) also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1) is a protein that in humans is encoded by the CD274 gene.

<span class="mw-page-title-main">Colony stimulating factor 1 receptor</span> Protein found in humans

Colony stimulating factor 1 receptor (CSF1R), also known as macrophage colony-stimulating factor receptor (M-CSFR), and CD115, is a cell-surface protein encoded by the human CSF1R gene. CSF1R is a receptor that can be activated by two ligands: colony stimulating factor 1 (CSF-1) and interleukin-34 (IL-34). CSF1R is highly expressed in myeloid cells, and CSF1R signaling is necessary for the survival, proliferation, and differentiation of many myeloid cell types in vivo and in vitro. CSF1R signaling is involved in many diseases and is targeted in therapies for cancer, neurodegeneration, and inflammatory bone diseases.

Angiogenesis is the process of forming new blood vessels from existing blood vessels, formed in vasculogenesis. It is a highly complex process involving extensive interplay between cells, soluble factors, and the extracellular matrix (ECM). Angiogenesis is critical during normal physiological development, but it also occurs in adults during inflammation, wound healing, ischemia, and in pathological conditions such as rheumatoid arthritis, hemangioma, and tumor growth. Proteolysis has been indicated as one of the first and most sustained activities involved in the formation of new blood vessels. Numerous proteases including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase domain (ADAM), a disintegrin and metalloproteinase domain with throbospondin motifs (ADAMTS), and cysteine and serine proteases are involved in angiogenesis. This article focuses on the important and diverse roles that these proteases play in the regulation of angiogenesis.

Adipose tissue macrophages (ATMs) comprise resident macrophages present in adipose tissue. Besides adipocytes, adipose tissue contains the stromal vascular fraction (SVF) of cells that includes pre-adipocytes, fibroblasts, vascular endothelial cells, and a large variety of immune cells. The latter ones are composed of mast cells, eosinophils, B cells, T cells and macrophages. The number of macrophages within adipose tissue differs depending on the metabolic status. As discovered by Rudolph Leibel and Anthony Ferrante et al. in 2003 at Columbia University, the percentage of macrophages within adipose tissue ranges from 10% in lean mice and humans up to 50% in obese leptin deficient mice, and up to 40% in obese humans. ATMs comprise nearly 50% of all immune cells in normal conditions, suggesting an important role in supporting normal functioning of the adipose tissue. Increased number of adipose tissue macrophages may correlate with increased production of pro-inflammatory molecules and might therefore contribute to the pathophysiological consequences of obesity, although is becoming recognized that in healthy conditions tissue-resident macrophages actively support a variety of critical physiological functions in nearly all organs and tissues, including adipose tissue.

<span class="mw-page-title-main">Tumor microenvironment</span> Surroundings of tumors including nearby cells and blood vessels

The tumor microenvironment is a complex ecosystem surrounding a tumor, composed of cancer cells, stromal tissue and the extracellular matrix. Mutual interaction between cancer cells and the different components of the tumor microenvironment support its growth and invasion in healthy tissues which correlates with tumor resistance to current treatments and poor prognosis. The tumor microenvironment is in constant change because of the tumor's ability to influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells.

Macrophage polarization is a process by which macrophages adopt different functional programs in response to the signals from their microenvironment. This ability is connected to their multiple roles in the organism: they are powerful effector cells of the innate immune system, but also important in removal of cellular debris, embryonic development and tissue repair.

<span class="mw-page-title-main">Emactuzumab</span> Monoclonal antibody

Emactuzumab (RG-7155) is a humanized monoclonal antibody directed against colony stimulating factor 1 receptor (CSF-1R) expressed on macrophages and has demonstrated a profound antitumor effect through interference with the CSF-1/CSF-1R axis, along with a manageable safety profile in patients with diffuse-type tenosynovial giant cell tumors (d-TGCT).

A cancer-associated fibroblast (CAF) is a cell type within the tumor microenvironment that promotes tumorigenic features by initiating the remodelling of the extracellular matrix or by secreting cytokines. CAFs are a complex and abundant cell type within the tumour microenvironment; the number cannot decrease, as they are unable to undergo apoptosis.

The host response to cancer therapy is defined as a physiological response of the non-malignant cells of the body to a specific cancer therapy. The response is therapy-specific, occurring independently of cancer type or stage.

<span class="mw-page-title-main">Michele De Palma</span> Italian biologist

Michele 'Miki' De Palma is an Italian biologist and a professor at EPFL. He is known for his work on the role of macrophages in cancer progression and the discovery of Tie2-expressing angiogenic monocytes.

<span class="mw-page-title-main">Dermal macrophage</span> Skin macrophages used for wound repair and hair growth

Dermal macrophages are macrophages in the skin that facilitate skin homeostasis by mediating wound repair, hair growth, and salt balance. Their functional role in these processes is the mediator of inflammation. They can acquire an M1 or M2 phenotype to promote or suppress an inflammatory response, thereby influencing other cells' activity via the production of pro-inflammatory or anti-inflammatory cytokines. Dermal macrophages' ability to acquire pro-inflammatory properties also potentiates them in cancer defence. M1 macrophages can suppress tumour growth in the skin by their pro-inflammatory properties. However, M2 macrophages support tumour growth and invasion by the production of Th2 cytokines such as TGFβ and IL-10. Thus, the exact contribution of each phenotype to cancer defence and the skin's homeostasis is still unclear.

<span class="mw-page-title-main">Endothelial cell anergy</span> Defense mechanism of tumors against immunity

Endothelial cell anergy is a condition during the process of angiogenesis, where endothelial cells, the cells that line the inside of blood vessels, can no longer respond to inflammatory cytokines. These cytokines are necessary to induce the expression of cell adhesion molecules to allow leukocyte infiltration from the blood into the tissue at places of inflammation, such as a tumor. This condition, which protects the tumor from the immune system, is the result of exposure to angiogenic growth factors.

References

  1. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M (April 2016). "Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy". Advanced Drug Delivery Reviews. 99 (Pt B): 180–185. doi:10.1016/j.addr.2015.11.009. PMID   26621196.
  2. 1 2 3 4 Ostuni R, Kratochvill F, Murray PJ, Natoli G (April 2015). "Macrophages and cancer: from mechanisms to therapeutic implications". Trends in Immunology. 36 (4): 229–239. doi:10.1016/j.it.2015.02.004. PMID   25770924.
  3. Qian BZ, Pollard JW (April 2010). "Macrophage diversity enhances tumor progression and metastasis". Cell. 141 (1): 39–51. doi:10.1016/j.cell.2010.03.014. PMC   4994190 . PMID   20371344.
  4. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (July 2017). "Tumour-associated macrophages as treatment targets in oncology". Nature Reviews. Clinical Oncology. 14 (7): 399–416. doi:10.1038/nrclinonc.2016.217. PMC   5480600 . PMID   28117416.
  5. 1 2 Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J (5 March 2014). "Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis". Frontiers in Physiology. 5: 75. doi: 10.3389/fphys.2014.00075 . PMC   3942647 . PMID   24634660.
  6. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. (October 2000). "Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis". Nature Cell Biology. 2 (10): 737–744. doi:10.1038/35036374. PMC   2852586 . PMID   11025665.
  7. Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, Li JF, Stefater JA, et al. (June 2014). "Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer". Cancer Research. 74 (11): 2962–2973. doi:10.1158/0008-5472.CAN-13-2421. PMC   4137408 . PMID   24638982.
  8. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (September 2005). "Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors". Cancer Cell. 8 (3): 211–226. doi: 10.1016/j.ccr.2005.08.002 . PMID   16169466.
  9. Coffelt SB, Chen YY, Muthana M, Welford AF, Tal AO, Scholz A, et al. (April 2011). "Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion". Journal of Immunology. 186 (7): 4183–4190. doi: 10.4049/jimmunol.1002802 . PMID   21368233.
  10. Gomes FG, Nedel F, Alves AM, Nör JE, Tarquinio SB (February 2013). "Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms". Life Sciences. 92 (2): 101–107. doi:10.1016/j.lfs.2012.10.008. PMC   3740377 . PMID   23178150.
  11. Scavelli C, Vacca A, Di Pietro G, Dammacco F, Ribatti D (June 2004). "Crosstalk between angiogenesis and lymphangiogenesis in tumor progression". Leukemia. 18 (6): 1054–1058. doi:10.1038/sj.leu.2403355. PMID   15057248. S2CID   11295697.
  12. Ostrand-Rosenberg, Suzanne (2021-03-04). "Myeloid-Derived Suppressor Cells: Facilitators of Cancer and Obesity-Induced Cancer". Annual Review of Cancer Biology. 5 (1): 17–38. doi: 10.1146/annurev-cancerbio-042120-105240 . hdl: 11603/20256 . ISSN   2472-3428.
  13. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, et al. (March 2006). "A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation)". Blood. 107 (5): 2112–2122. doi: 10.1182/blood-2005-01-0428 . PMID   16269622. S2CID   5884781.
  14. Ojalvo LS, King W, Cox D, Pollard JW (March 2009). "High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors". The American Journal of Pathology. 174 (3): 1048–1064. doi:10.2353/ajpath.2009.080676. PMC   2665764 . PMID   19218341.
  15. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, Zheng L (June 2009). "Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1". The Journal of Experimental Medicine. 206 (6): 1327–1337. doi:10.1084/jem.20082173. PMC   2715058 . PMID   19451266.
  16. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, et al. (April 2006). "B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma". The Journal of Experimental Medicine. 203 (4): 871–881. doi:10.1084/jem.20050930. PMC   2118300 . PMID   16606666.
  17. 1 2 3 4 Vanmeerbeek I, Naulaerts S, Sprooten J, Laureano RS, Govaerts J, Trotta R, et al. (July 2024). "Targeting conserved TIM3+VISTA+ tumor-associated macrophages overcomes resistance to cancer immunotherapy". Science Advances. 10 (29): eadm8660. doi:10.1126/sciadv.adm8660. PMC   11259173 . PMID   39028818.
  18. Noy R, Pollard JW (July 2014). "Tumor-associated macrophages: from mechanisms to therapy". Immunity. 41 (1): 49–61. doi:10.1016/j.immuni.2014.06.010. PMC   4137410 . PMID   25035953.
  19. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, et al. (October 2010). "Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression". Cancer Research. 70 (19): 7465–7475. doi:10.1158/0008-5472.CAN-10-1439. PMC   2948598 . PMID   20841473.
  20. Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, et al. (April 2019). "Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy". Nature Medicine. 25 (4): 656–666. doi:10.1038/s41591-019-0374-x. PMC   7175920 . PMID   30833750.
  21. 1 2 Martinez FO, Gordon S (3 March 2014). "The M1 and M2 paradigm of macrophage activation: time for reassessment". F1000Prime Reports. 6: 13. doi: 10.12703/P6-13 . PMC   3944738 . PMID   24669294.
  22. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (April 2008). "The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages". Critical Reviews in Oncology/Hematology. 66 (1): 1–9. doi:10.1016/j.critrevonc.2007.07.004. PMID   17913510.
  23. De la Cruz-Merino L, Barco-Sanchez A, Henao Carrasco F, et al.: New insights into the role of the immune microenvironment in breast carcinoma. Dev Immunol 2013; 2013: 785317.
  24. Williams CB, Yeh ES, Soloff AC (2016-01-20). "Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy". npj Breast Cancer. 2 (1): 15025–. doi:10.1038/npjbcancer.2015.25. PMC   4794275 . PMID   26998515.
  25. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. (October 2013). "CSF-1R inhibition alters macrophage polarization and blocks glioma progression". Nature Medicine. 19 (10): 1264–1272. doi:10.1038/nm.3337. PMC   3840724 . PMID   24056773.
  26. Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Rüttinger D (July 2017). "Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy". Journal for Immunotherapy of Cancer. 5 (1): 53. doi: 10.1186/s40425-017-0257-y . PMC   5514481 . PMID   28716061.
  27. Sankhala KK, Blay JY, Ganjoo KN, Italiano A, Hassan AB, Kim TM, et al. (2017). "A phase I/II dose escalation and expansion study of cabiralizumab (cabira; FPA-008), an anti-CSF1R antibody, in tenosynovial giant cell tumor (TGCT, diffuse pigmented villonodular synovitis D-PVNS)". Journal of Clinical Oncology. 35 (15_suppl): 11078. doi:10.1200/JCO.2017.35.15_suppl.11078.
  28. Clinical trial number NCT03158272 for "A Study to of Cabiralzumab Given by Itself or With Nivolumab in Advanced Cancer or Cancer That Has Spread" at ClinicalTrials.gov
  29. Inman S (12 November 2017). "Novel Combination Shows Promising Responses in Pancreatic Cancer". OncLive.
  30. Cuccarese MF, Dubach JM, Pfirschke C, Engblom C, Garris C, Miller MA, et al. (February 2017). "Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging". Nature Communications. 8: 14293. Bibcode:2017NatCo...814293C. doi:10.1038/ncomms14293. PMC   5309815 . PMID   28176769.
  31. 1 2 Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, et al. (August 2018). "TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy". Nature Biomedical Engineering. 2 (8): 578–588. doi:10.1038/s41551-018-0236-8. PMC   6192054 . PMID   31015631.
  32. 1 2 Ruffell B, Coussens LM (April 2015). "Macrophages and therapeutic resistance in cancer". Cancer Cell. 27 (4): 462–472. doi:10.1016/j.ccell.2015.02.015. PMC   4400235 . PMID   25858805.
  33. Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, et al. (March 2017). "Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages". Nature. 543 (7645): 428–432. Bibcode:2017Natur.543..428G. doi:10.1038/nature21409. PMC   8170529 . PMID   28273064.