Macroscope (science concept)

Last updated

In science, the concept of a macroscope is the antithesis of the microscope, namely a method, technique or system appropriate to the study of very large objects or very complex processes, for example the Earth and its contents, [1] [2] or conceptually, the Universe. Obviously, a single system or instrument does not presently exist that could fulfil this function, however its concept may be approached by some current or future combination of existing observational systems. [3] [4] [5] The term "macroscope" has also been applied to a method or compendium which can view some more specific aspect of global scientific phenomena in its entirety, such as all plant life, [6] specific ecological processes, [7] or all life on earth. [8] The term has also been used in the humanities, as a generic label for tools which permit an overview of various other forms of "big data". As discussed here, the concept of a "macroscope" differs in essence from that of the macroscopic scale, which simply takes over from where the microscopic scale leaves off, covering all objects large enough to be visible to the unaided eye, as well as from macro photography, which is the imaging of specimens at magnifications greater than their original size, and for which a specialised microscope-related instrument known as a "Macroscope" has previously been marketed. For some workers, one or more (planetary scale) "macroscopes" can already be constructed, to access the sum of relevant existing observations, while for others, deficiencies in current sampling regimes and/or data availability point to additional sampling effort and deployment of new methodologies being required before a true "macroscope" view of Earth can be obtained.

Contents

History of the concept

The term "macroscope" is generally credited as being introduced into scientific usage by the ecologist Howard T. Odum in 1971, [9] [10] who employed it, in contrast to the microscope (which shows small objects in great detail), to represent a kind of "detail eliminator" which thus permits a better overview of ecological systems for simplified modelling and, potentially, management (Odum, 1971, figure 10). [11] Ecologist James Brown (ecologist) equated the field of Macroecology as the process of looking "at the living world through a macroscope rather than through a microscope, and as a result it sees different things than are revealed by most ecological studies ... As I began to look through the macroscope, however, I found that it gave me a view of the ecological world that neither my experiments at one study site nor my nonmanipulative comparative studies at a necessarily limited number of field sites could provide." [3]

Some authors, such as Hidefumi Imura, continue to use the term as more-or-less synonymous with an overview or large scale pattern analysis of data in their field. [12] [13] Other prominent authors and speakers who have utilized "macroscope" terminology for "big picture" views in their particular areas of interest include Jesse H. Ausubel [6] [14] and John Thackara. [15]

In actuality, the term (in the present sense of a "larger view" of a subject than can be obtained by any single conventional action) pre-dates its use in Odum's work, being found for example in a book by Philip Bagby entitled "Culture and History: Prolegomena to the Comparative Study of Civilizations" published in 1959, who wrote, "[Someone should] invent a 'macroscope', an instrument which would ensure that the historian see only the larger aspects of history and blind him to the individual details", [16] and also by W.H. Hargreaves and K.H. Blacker, who wrote in 1966 in the journal Psychiatric Services: "The advent of the electronic digital computer is causing a revolution in the behavioral sciences comparable to the impact the microscope had on biology. Like the microscope, the computer provides a view that is beyond the capability of the naked eye. The computer is being used as a "macroscope," which enables us to perceive relationships based on larger patterns of information than we are otherwise able to integrate." [17] Slightly earlier still, in the area of geography, in a 1957 article entitled "Geographer's Quest" for the Centennial Review of Arts & Science, Lawrence M. Sommers and Clarence L. Vinge wrote: "What do we see? What are the inter-relationships that exist among the observed features? The near-views can, by means of mapping, be resolved with over-the-horizon views, and the map becomes a "macroscope" to help us understand the spatial organization of the Earth's phenomena.", [18] while in a 1951 United States Department of Agriculture Appropriation Bill, discussing a recently passed Forestry Management Act, Perry H. Merrill, State Forestor of Vermont, is reported as saying: "Through [this Act] I feel that we have made a great headway ... instead of looking through a microscope, maybe we can look through a "macroscope", if you want to call it such." [19] [a]

The term was (re-)presented as new (Odum's prior use was mentioned in a footnote) by the French scientific thinker Joël de Rosnay, who wrote a detailed book explaining his concept in 1975: "We need, then, a new instrument. The microscope and the telescope have been valuable in gathering the scientific knowledge of the universe. Now a new tool is needed by all those who would try to understand and direct effectively their action in this world, whether they are responsible for major decisions in politics, in science, and in industry or are ordinary people as we are. I shall call this instrument the macroscope (from macro, great, and skopein, to observe)." In de Rosnay's view, the macroscope could be turned not only on the natural and physical worlds but also on human-related systems such as the growth of cities, economics, and the behaviour of humans in society. [1]

More recent workers have tended to use the term synonymously with a whole-of-Earth observational system, or portion thereof, underpinned particularly by satellite imagery derived from remote sensing, and/or by in situ observations obtained via sensor networks (see below).

As an extension of its science context, the term "macroscope" has also been applied in the humanities, as a generic term for any tool permitting an overview of, and insight into "big data" collections in that or related areas. [22] [23] [24] [25] For completeness, it should be mentioned that the concept of a "reverse microscope" is not entirely new: around 80 years earlier, the author Lewis Carroll in the second volume of his novel Sylvie and Bruno , published in 1893, described a fictional professor who includes in his lecture an instrument that will shrink an elephant to the size of a mouse, that he termed the "megaloscope". [26] The Dutch author Kees Boeke also wrote a 1957 book, Cosmic View: The Universe in 40 Jumps , [27] the first portion of which presents images of aspects of the Earth at ever decreasing scales and parallels the subsequent principle of the hypothetical "macroscope" at a series of zoom levels.

Interpretation and practical implementations

Image from a 2007 "macroscope" demonstration concept from the ICT Division of CSIRO, showing physical data from a Fleck wireless sensor network overlaid on Google topographic imagery CSIRO ScienceImage 3672 CSIRO interoperability software and Fleck sensor platforms used with other OGCcompliant tools.jpg
Image from a 2007 "macroscope" demonstration concept from the ICT Division of CSIRO, showing physical data from a Fleck wireless sensor network overlaid on Google topographic imagery

The more practical aspect of exactly what constitutes a macroscope has varied through time and according to the interests, requirements, and field of activity of the workers concerned. Sommers and Vinge viewed the "macroscope" as an extended system of mapping to visualize the spatial relationships between items on the surface of the Earth, thus notionally prefiguring the concept of subsequently developed "seamless" geographic display systems via CD-ROMs and the world wide web along the lines of the "Atlas" facility of Microsoft Encarta, and Google Maps/Google Earth. Odum's concept was for the study of ecosystems, by integrating the results of existing methods of surveying, identifying, and classifying their contents, then eliminating fine scale detail to obtain a "big picture" view suitable for analysis and, as needed, simulation. De Rosnay viewed his "macroscope" as a systems-based viewpoint for the study of (among other things) the nature of human society, and understanding of the rationale for human actions. He wrote:

Let us use the macroscope to direct a new look at nature, society, and man and to try to identify new rules of education and action. In its field of vision organizations, events, and evolutions are illuminated by a totally different light. The macroscope filters details and amplifies that which links things together. It is not used to make things larger or smaller but to observe what is at once too great, too slow, and too complex for our eyes (human society, for example, is a gigantic organism that is totally invisible to us). [28]

From around the early 2000s onwards, interest in the "macroscope" concept has steadily increased, both with the vastly improved computing power in organisations and on scientists' desktops, and with access to more extensive sets of both locally acquired and publicly available data such as Earth observations. For some recent workers such as Dornelas et al. as referenced below, the macroscope is the envisaged set of the observational tools that collectively will deliver the desired synoptic suite of observations over the relevant field of study (in their case for the marine realm, itemised as satellites, drones, camera traps, passive acoustic samplers, biologgers, environmental DNA and human observations), [4] Writing in 2019, these authors stated:

Earth-based observations of the biosphere are spatially biased in ways that can limit our ability to detect macroecological patterns and changes in biodiversity. To resolve this problem, we need to supplement the ad hoc data currently collected with planned biodiversity monitoring, in order to approximate global stratified random sampling of the planet. We call this all-encompassing observational system 'the macroscope'. ... By deploying a nested array of these tools [satellites, drones, camera traps, etc.] that fills current gaps in monitoring, we can achieve a macroscope fit for purpose and turn these existing powerful tools into more than the sum of their parts.

For others, the macroscope is already here, as a sort of "virtual instrument", with data sources such as Landsat satellite imagery providing the requisite high resolution Earth view, [29] [30] and/or wireless sensor networks providing a suite of local, in situ observations. [31] [32] In the view of IBM researchers, the macroscope is the technical solution—basically within the realms of data management, data analysis and data mining—that will permit all existing earth and related observations to be integrated and queried for meaningful results. Writing in 2017 they stated:

By 2022 we will use machine-learning algorithms and software to help us organize information about the physical world, helping bring the vast and complex data gathered by billions of devices within the range of our vision and understanding. We call this a "macroscope" – but unlike the microscope to see the very small, or the telescope that can see far away, it is a system of software and algorithms to bring all of Earth's complex data together to analyze it by space and time for meaning. [5]

According to IBM in 2020, these "macroscope" principles were subsequently implemented as an experimental system named the "IBM PAIRS Geoscope", [33] later re-badged as the Geospatial Analytics component within the IBM Environmental Intelligence Suite and described therein as "a platform specifically designed for massive geospatial-temporal (maps, satellite, weather, drone, IoT [="Internet of Things"]) query and analytics services". [34]

For Craig Mundey of Microsoft, the benefits of the macroscope are not only for observation of the Earth, but also of aspects of the people on it:

As the Earth becomes increasingly instrumented with low-cost, high-bandwidth sensors, we will gain a better understanding of our environment via a virtual, distributed whole-Earth "macroscope"... Massive-scale data analytics will enable real-time tracking of disease and targeted responses to potential pandemics. Our virtual "macroscope" can now be used on ourselves, as well as on our planet (Microsoft Research, 2009). [35]

Some 10 years later, during which time computing power and readily accessible data storage had continued to advance, Microsoft announced the planned development of its "Planetary Computer", an "approach to computing that is planetary in scale and allows us to query every aspect of environmental and nature-based solutions available in real time." [36] Meanwhile, from around 2010 onwards, Google had already developed a somewhat similar facility entitled "Google Earth Engine" that uses cloud computing for numerical analysis of large quantities of satellite imagery; [37] as at 2021, the project website states that "Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities. Scientists, researchers, and developers use Earth Engine to detect changes, map trends, and quantify differences on the Earth's surface." [38] Such initiatives can perhaps be viewed as the "high end" for ingestion of massive, global scale input datasets and associated computation; at the other end of the scale, the development of cross-platform (open) standards for the exchange of digitized geographic information by the Open Geospatial Consortium since the early 2000s has enabled researchers equipped with minimal software to request, display, overlay and otherwise interact with subsets of remote global data streams via (for example) Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS) without a requirement to hold any of the data locally, capable of producing a type of "macroscope" functionality at modest cost (free in the case of open source solutions such as GeoServer, MapServer and more) for displaying information of the user's choice against a range of possible base maps. [39] Other presently available solutions of a similar nature - where the client "virtual globe" software is installed either on the user's device or runs in a web browser, and can then access either remote, or locally held data layers for display over pre-prepared base maps - include NASA WorldWind and ESRI's ArcGIS Earth.

In 2013-2014, the New York City Department of Health and Mental Hygiene (DOHMH) designed their own "NYC Macroscope", a surveillance system for electronic health records of New York City residents, designed to "measure health outcomes among the NYC adult population actively seeking medical care". [40] The Indiana University School of Informatics and Computing also runs a mapping outreach program via its Cyberinfrastructure for Network Science Center entitled "Places and Spaces: Mapping Sciences" which in its 2016 program included "eight interactive macroscopes", accompanied by the following definition: "Macroscopes are software tools that help people focus on patterns in data that are too large or complex to see unaided. The world is a complex place, and macroscopes help us understand and manage that complexity. They are visual lenses we can use to see patterns and trends in large volumes of data." [41] Another initiative that has been referred to as a "macroscope" is the Ocean Biogeographic Information System (OBIS), as described by Vanden Berghe et al. in 2012, who wrote: "Its ambition to become a 'Macroscope' (de Rosnay, 1979) for marine biodiversity will allow us to see past complexities and the idiosyncrasies of individual datasets to see the "big picture" of ocean life more clearly", [42] a key activity for this project being the transformation of data existing previously in disparate, and sometimes inaccessible forms into a single, standardized format for ease of access and the production of summary information as desired.

A putative "macroscope" of another variety is the Global Database of Events, Language, and Tone (GDELT Project), which monitors (most of) the world's news media creating "trillions of datapoints", then offering "realtime synthesis of global societal-scale behavior into a rich quantitative database allowing realtime monitoring and analytical exploration of those trends." According to the project's website, one of its outputs, the GDELT Global Knowledge Graph (GKG), compiles "a list of every person, organization, company, location and several million themes and thousands of emotions from every news report, using some of the most sophisticated named entity and geocoding algorithms in existence, designed specifically for the noisy and ungrammatical world that is the world's news media." [43]

In 2018, 3 partner agencies - The United Nations Development Program (UNDP), the United Nations Environment (UN Environment), and the Secretariat of the Convention on Biological Diversity - launched the "UN Biodiversity Lab" (UNBL) (https://unbiodiversitylab.org/), described as "enhancing access to big data for sustainable development" in the form of global spatial data on protected areas, endangered species, human impact on natural systems, watersheds for key cities, and more. [44] Version 2.0 of the UNBL, released in October 2021, reportedly contains "over 400 spatial data layers across biodiversity, climate change, and development", also offering workspaces where national-level users can upload their own data in order to compile maps for reporting purposes and nation-scale biodiversity planning and monitoring of biodiversity. [45]

Some of the differences in approach described above are easier to understand if the macroscope is interpreted as a particular instance of the "value chain of big data" (with a particular focus on earth and/or biosphere observations), which as stated in Chen et al. (2014) can be divided into four phases, namely data generation, data acquisition (aka data assembly), data storage, and data analysis. [46] For some workers such as M. Dornelas et al., the macroscope is the sum of the data collection systems (the generation element) that will provide the content that is needed for subsequent analysis, although some mention is also made of "a series of domain-specific data registries" which would then permit the content to be discovered. [4] For others such as OBIS, the principal effort required to construct the macroscope is the data assembly component, which then permits the integrated analysis of previously disparate datasets (OBIS data can then either be viewed by the tools supplied, or downloaded to a user's own system for additional visualization and analysis); while for facilities interested in discovering patterns in the data (and with sufficient computing power to hand), the macroscope is the suite of temporal and spatial analytical and filtering tools ("lenses" in the terminology of the Indiana University Cyberinfrastructure for Network Science Center) which can be applied once the data are assembled. Since by analogy with the microscope, the macroscope is in essence a method of visualizing subjects too large to be seen completely in a conventional field of view, probably none of these approaches are incorrect, the differences in emphasis being complementary in that each is capable of contributing to the resulting "virtual instrument" that is envisaged by this concept. One trend that is observable, however, is that of increasing base dataset size and desired sampling density, today's "macroscopes" being built upon arrays of fine scale / high resolution data that would have been discarded as undesirable detail (obscuring the "big picture") in the original concepts of Odum and de Rosnay.

Similar concepts

A number of the concepts described above either reappear, or are paralleled, in the alternatively-named "Geoscope" proposal by Buckminster Fuller in 1962, which was suggested to be a giant representation of the Globe upon which "all relevant inventories of world data" could be displayed via a system of computers. Among the benefits of such a system would be: "With the Geoscope humanity would be able to recognize formerly invisible patterns and thereby to forecast and plan in vastly greater magnitude than heretofore." [47] A similar concept re-emerged as a more concrete proposal entitled "Digital Earth" espoused by then U.S. vice president Al Gore in 1998, [48] progress towards which was reviewed in a 2015 survey paper by Mahdavi-Amiri et al. [49]

Contrasting terminology

The term macroscopic scale differs in usage from the science concept as discussed above; in essence it covers any item large enough to be seen with the unaided eye, in other words, not requiring a microscope to be visualized. Some authors also use "macroscopic" as part of a continuum of successively larger types of scale, commencing with microscopic, then macroscopic, then mesoscopic, and finally megascopic scales. [50] By contrast, macro photography (short for macroscopic photography) is a term used to cover photographs where the subject appears magnified (greater than life size), strictly speaking at the film plane but in practice when reproduced as a print or on a screen, generally in the range of x1 to x10 magnification; while a Macroscope is also a designation for a type of optical microscope formerly marketed by the European manufacturers Wild Heerbrugg and Leica Microsystems, optimised for macro- and microphotography in the x8 to x40 magnification range; [51] similar instruments, also under the name "Macroscopes", were also previously offered by other optical manufacturers including Bausch and Lomb, and Ednalite Research Corporation. Another use of the term "macroscope", pre-dating Odum's popularization of the science concept, occurs in the novelist Piers Anthony's 1969 science fiction book of the same name, in which his imaginary instrument is a sort of super-telescope, capable of focusing anywhere in space and time at the direction of the user, while in Jill Linz & Cindy Schwarz's 2009 children's novel Adventures in Atomville: The Macroscope, the titular instrument is a new invention by which atoms (which have identities in the book) can visualize the "outside world" for the first time. [52] The term "macroscope" has also been employed in at least 2 instances in the names of commercial computer software products. [53] [54]

See also

Notes

  1. The term may in fact be considerably older: in a letter in the 1895(!) issue of "Forest and Stream" by a correspondent under the pseudonym "Ego", the following intriguing text occurs: "The microscope has opened up the world of little things as the macroscope has opened up the world of great things, and, though both go an infinite distance beyond the scope of man's vision, instead of bringing him nearer the end, they but immensely enlarge the beginning." [20] Another, even earlier, use of the term occurs in Ludimar Hermann's 1875 book "Elements of Human Physiology", where, in a discussion of optics and optical instruments, he writes: "Two fine threads or lines, which are at a constant distance from the eye are approximated to one another... Instead of approximating the objects to one another, they can also be looked at with the aid of an apparatus for diminishing the size of objects (macroscope)." [21]

Related Research Articles

<span class="mw-page-title-main">Graphical user interface</span> User interface allowing interaction through graphical icons and visual indicators

A graphical user interface, or GUI, is a form of user interface that allows users to interact with electronic devices through graphical icons and visual indicators such as secondary notation. In many applications, GUIs are used instead of text-based UIs, which are based on typed command labels or text navigation. GUIs were introduced in reaction to the perceived steep learning curve of command-line interfaces (CLIs), which require commands to be typed on a computer keyboard.

The microscopic scale is the scale of objects and events smaller than those that can easily be seen by the naked eye, requiring a lens or microscope to see them clearly. In physics, the microscopic scale is sometimes regarded as the scale between the macroscopic scale and the quantum scale. Microscopic units and measurements are used to classify and describe very small objects. One common microscopic length scale unit is the micrometre, which is one millionth of a metre.

The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic.

Howard Thomas Odum, usually cited as H. T. Odum, was an American ecologist. He is known for his pioneering work on ecosystem ecology, and for his provocative proposals for additional laws of thermodynamics, informed by his work on general systems theory.

UVC-based preservation is an archival strategy for handling the preservation of digital objects. It employs the use of a Universal Virtual Computer (UVC)—a virtual machine (VM) specifically designed for archival purposes, that allows both emulation and migration to a language-neutral format like XML.

Social computing is an area of computer science that is concerned with the intersection of social behavior and computational systems. It is based on creating or recreating social conventions and social contexts through the use of software and technology. Thus, blogs, email, instant messaging, social network services, wikis, social bookmarking and other instances of what is often called social software illustrate ideas from social computing.

A collaboratory, as defined by William Wulf in 1989, is a “center without walls, in which the nation’s researchers can perform their research without regard to physical location, interacting with colleagues, accessing instrumentation, sharing data and computational resources, [and] accessing information in digital libraries”.

<span class="mw-page-title-main">Virtual globe</span> 3D software model or representation of Earth or another world

A virtual globe is a three-dimensional (3D) software model or representation of Earth or another world. A virtual globe provides the user with the ability to freely move around in the virtual environment by changing the viewing angle and position. Compared to a conventional globe, virtual globes have the additional capability of representing many different views of the surface of Earth. These views may be of geographical features, man-made features such as roads and buildings, or abstract representations of demographic quantities such as population.

<span class="mw-page-title-main">Systems ecology</span> Holistic approach to the study of ecological systems

Systems ecology is an interdisciplinary field of ecology, a subset of Earth system science, that takes a holistic approach to the study of ecological systems, especially ecosystems. Systems ecology can be seen as an application of general systems theory to ecology. Central to the systems ecology approach is the idea that an ecosystem is a complex system exhibiting emergent properties. Systems ecology focuses on interactions and transactions within and between biological and ecological systems, and is especially concerned with the way the functioning of ecosystems can be influenced by human interventions. It uses and extends concepts from thermodynamics and develops other macroscopic descriptions of complex systems.

Earth observation (EO) is the gathering of information about the physical, chemical, and biological systems of the planet Earth. It can be performed via remote-sensing technologies or through direct-contact sensors in ground-based or airborne platforms.

Digital Earth is the name given to a concept by former US vice president Al Gore in 1998, describing a virtual representation of the Earth that is georeferenced and connected to the world's digital knowledge archives.

A clustered file system (CFS) is a file system which is shared by being simultaneously mounted on multiple servers. There are several approaches to clustering, most of which do not employ a clustered file system. Clustered file systems can provide features like location-independent addressing and redundancy which improve reliability or reduce the complexity of the other parts of the cluster. Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance.

<span class="mw-page-title-main">Atmospheric infrared sounder</span> Science instrument on NASAs Aqua satellite

The atmospheric infrared sounder (AIRS) is one of six instruments flying on board NASA's Aqua satellite, launched on May 4, 2002. The instrument is designed to support climate research and improve weather forecasting.

<span class="mw-page-title-main">Meteorological instrumentation</span> Measuring device used in meteorology

Meteorological instruments, including meteorological sensors, are the equipment used to find the state of the atmosphere at a given time. Each science has its own unique sets of laboratory equipment. Meteorology, however, is a science which does not use much laboratory equipment but relies more on on-site observation and remote sensing equipment. In science, an observation, or observable, is an abstract idea that can be measured and for which data can be taken. Rain was one of the first quantities to be measured historically. Two other accurately measured weather-related variables are wind and humidity. Many attempts had been made prior to the 15th century to construct adequate equipment to measure atmospheric variables.

<span class="mw-page-title-main">WorldWide Telescope</span> Set of open-source services

WorldWide Telescope (WWT) is an open-source set of applications, data and cloud services, originally created by Microsoft Research but now an open source project hosted on GitHub. The .NET Foundation holds the copyright and the project is managed by the American Astronomical Society and has been supported by grants from the Moore Foundation and National Science Foundation. WWT displays astronomical, earth and planetary data allowing visual navigation through the 3-dimensional (3D) Universe. Users are able to navigate the sky by panning and zooming, or explore the 3D universe from the surface of Earth to past the Cosmic microwave background (CMB), viewing both visual imagery and scientific data about that area and the objects in it. Data is curated from hundreds of different data sources, but its open data nature allows users to explore any third party data that conforms to a WWT supported format. With the rich source of multi-spectral all-sky images it is possible to view the sky in many wavelengths of light. The software utilizes Microsoft's Visual Experience Engine technologies to function. WWT can also be used to visualize arbitrary or abstract data sets and time series data.

<span class="mw-page-title-main">Computer cluster</span> Set of computers configured in a distributed computing system

A computer cluster is a set of computers that work together so that they can be viewed as a single system. Unlike grid computers, computer clusters have each node set to perform the same task, controlled and scheduled by software. The newest manifestation of cluster computing is cloud computing.

Dynamic Infrastructure is an information technology concept related to the design of data centers, whereby the underlying hardware and software can respond dynamically and more efficiently to changing levels of demand. In other words, data center assets such as storage and processing power can be provisioned to meet surges in user's needs. The concept has also been referred to as Infrastructure 2.0 and Next Generation Data Center.

Macroscope may refer to:

Forest informatics is the combined science of forestry and informatics, with a special emphasis on collection, management, and processing of data, information and knowledge, and the incorporation of informatic concepts and theories specific to enrich forest management and forest science; it has a similar relationship to library science and information science.

Cloud-based quantum computing is the invocation of quantum emulators, simulators or processors through the cloud. Increasingly, cloud services are being looked on as the method for providing access to quantum processing. Quantum computers achieve their massive computing power by initiating quantum physics into processing power and when users are allowed access to these quantum-powered computers through the internet it is known as quantum computing within the cloud.

References

  1. 1 2 de Rosnay, J. (1975). Le macroscope, vers une vision globale [The macroscope, towards a global vision]. Editions du Seuil, Paris. English translation (as "The macroscope: a new world scientific system") available online at http://pespmc1.vub.ac.be/macroscope/default.html
  2. Jerome E. Dobson: "Through the Macroscope: Geography's View of the World". ArcNews, Winter 2011/2012. www.esri.com, accessed 9 June 2020.
  3. 1 2 Brown, J. H. (1995). Macroecology. University of Chicago Press.
  4. 1 2 3 Dornelas, Maria; Madin, Elizabeth; et al. (2019). "Towards a macroscope: Leveraging technology to transform the breadth, scale and resolution of macroecological data". Global Ecology and Biogeography. 28 (12): 1937–1948. Bibcode:2019GloEB..28.1937D. doi:10.1111/geb.13025. hdl: 10023/20955 . S2CID   209588440.
  5. 1 2 http://www.research.ibm.com: Macroscopes will help us understand Earth's complexity in infinite detail. Accessed 8 June 2020
  6. 1 2 Ausubel, Jesse H. (2009). "A botanical macroscope". Proceedings of the National Academy of Sciences. 106 (31): 12569–12570. Bibcode:2009PNAS..10612569A. doi: 10.1073/pnas.0906757106 . PMC   2722277 . PMID   19666620.
  7. Nixon, Scott W. (2009). "Eutrophication and the macroscope". Eutrophication in Coastal Ecosystems. Vol. 629. pp. 5–19. doi:10.1007/978-90-481-3385-7_2. ISBN   978-90-481-3384-0.{{cite book}}: |journal= ignored (help)
  8. Encyclopedia of Life, February 2008: "Scientists to explore life's mysteries through encyclopedic 'macroscope'." AAAS EurekaAlert, accessed 06 June 2020.
  9. The Emergy Society: "Through the Macroscope: the legacy of H.T. Odum". Online article, available at https://www.emergysociety.com/through-the-macroscope/
  10. Ariel E. Lugo, 2016. "A glimpse of the tropics through Odum's macroscope". In Michael R. Willig, Lawrence R. Walker (eds): Long-Term Ecological Research: Changing the Nature of Scientists. Oxford University Press. ISBN   9780190614102
  11. Howard T. Odum, 1971. Environment, Power, and Society. Wiley, New York, 331 pp.
  12. Imura, H., 2013. Environmental Systems Studies: A Macroscope for Understanding and Operating Spaceship Earth. Springer, 151 pp. ISBN   9784431541257 (original in Japanese, published 2009)
  13. de Magny, G.C., Renaud, F., Durand, P. & Guégan, J.-F., 2008. Health ecology: a new tool, the macroscope. Chapter 8 (pp. 129-148) in Thomas, F., Guégan, J.-F. & Renaud, F. (editors): Ecology and Evolution of Parasitism: Hosts to Ecosystems. Oxford University Press, 240 pp.
  14. Jesse Ausubel, 2007. "Telescopes, microscopes, macroscopes and DNA barcodes". Opening Talk for the conference "Using Barcode Data in Studies of Molecular and Evolutionary Dynamics", The Banbury Center, Cold Spring Harbor Laboratory, 28–31 October 2007. Available at http://antephase.com/wp-content/uploads/2010/02/Ausubel-Macroscope-and-Barcodes.pdf
  15. "John Thackara: Cultural Theory". Metropolis. Retrieved 2023-08-16.
  16. Bagby, Philip, 1959. Culture and History: Prolegomena to the Comparative Study of Civilizations. University of California Press, 244 pp.
  17. Hargreaves, W.H.; Blacker, K.H. (1966). "3. Charting Changes in Patients' Daily Behavior". Psychiatric Services. 17 (3): 70–73. doi:10.1176/ps.17.3.70.
  18. Sommers, Lawrence M.; Vinge, Clarence L. (1957). "Geographer's Quest". The Centennial Review of Arts & Science. 1 (4): 386–403. JSTOR   45133788.
  19. Appropriations, United States Congress Senate Committee on (1951). Agricultural Appropriations for ...: Hearings Before the Subcommittee of the Committee on Appropriations, United States Senate. U.S. Government Printing Office.
  20. Available at https://www.biodiversitylibrary.org/page/43344450
  21. Ludimar Hermann, 1875: Elements of Human Physiology. Work available at https://www.google.com.au/books/edition/Elements_of_human_physiology/_xT-FnHOSDoC ("macroscope" reference on p. 399).
  22. Tangherlini, Timothy R. (2013). "The folklore macroscope: challenges for a computational folkloristics". Western Folklore. 72 (1): 7–27. JSTOR   24550905.
  23. Shawn Graham, Ian Milligan and Scott Weingart, 2015. Exploring Big Historical Data: The Historian's Macroscope. World Scientific Publishing Company, 308 pp.
  24. Yun, Joseph T.; Vance, Nickolas; et al. (2020). "The Social Media Macroscope: A science gateway for research using social media data". Future Generation Computer Systems. 111: 819–828. doi:10.1016/j.future.2019.10.029. S2CID   209090742 . Retrieved 2020-06-15.
  25. Inceoglu, Ilke; Arnold, Kara A.; et al. (2021). "From Microscopic to Macroscopic Perspectives and Back: The Study of Leadership and Health/Well-Being". Journal of Occupational Health Psychology. 26 (6): 459–468. doi:10.1037/ocp0000316. hdl: 1854/LU-8743175 . PMID   34990165. S2CID   245809469 . Retrieved 2022-07-14.
  26. Carroll, Lewis; Furniss, Harry (1893). Sylvie and Bruno concluded. University of California Libraries. London; New York : Macmillan and Co.
  27. Kees Boeke, 1957: Cosmic View: The Universe in 40 Jumps. John Day Company, New York. ISBN   0-381-98016-2.
  28. de Rosnay, 1975, English translation: Introduction
  29. Amoroso, Ricardo O.; Parma, Ana M.; Orensanz, J. M. (Lobo); Gagliardini, Domingo A. (2011). "Zooming the macroscope: medium-resolution remote sensing as a framework for the assessment of a small-scale fishery". ICES Journal of Marine Science. 68 (4): 696–706. doi: 10.1093/icesjms/fsq162 . Retrieved 2020-06-10.
  30. Endsley, K.A., 2018: "Remote sensing of socio-ecological dynamics in urban neighborhoods". Pp. 90-106 in Walsh, Stephen (ed.): Comprehensive Remote Sensing, vol. 9. Applications for Societal Benefits. Elsevier, 2018.
  31. Tolle, Gilman; Polastre, Joseph; et al. (2005). "A macroscope in the redwoods". Proceedings of the 3rd international conference on Embedded networked sensor systems. pp. 51–63. doi:10.1145/1098918.1098925. ISBN   159593054X. S2CID   1233150.
  32. "The geological macroscope". Chapter 8 in Michael Stephenson: Energy and Climate Change: An Introduction to Geological Controls. Elsevier, 2018, 206 pp.
  33. Jeffrey Welser: IBM’s past “5 in 5” predictions – where are they now? IBM Research Blog, September 23, 2020, accessed 12 October 2020.
  34. IBM: IBM Environmental Intelligence Suite: Geospatial Analytics. Accessed 5 October 2021.
  35. Craig Mundey: "The way forward". Pp. 223-226 in Tony Hey, Stewart Tansley and Kristin Tolle (eds): The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, 2009. ISBN   978-0-9825442-0-4. Available at https://www.microsoft.com/en-us/research/wp-content/uploads/2009/10/Fourth_Paradigm.pdf
  36. Lucas Joppa, September 19, 2019: "A Planetary Computer to Avert Environmental Disaster". Scientific American, available at https://www.scientificamerican.com/article/a-planetary-computer-to-avert-environmental-disaster/; project website at https://planetarycomputer.microsoft.com/ .
  37. Gardner, Timothy (December 2, 2010). "Google unveils satellite platform to aid forest efforts". reuters.
  38. Google Earth Engine website, retrieved 9 October 2021
  39. Jeff McKenna, David Fawcett and Howard Butler, 2021: An Introduction to MapServer. Accessed 9 October 2021.
  40. Newton-Dame, Remle; McVeigh, Katharine H.; Schreibstein, Lauren; Perlman, Sharon; et al. (2016). "Design of the New York City Macroscope: innovations in population health surveillance using electronic health records". EGEMS (Wash DC). 4 (1): 1265. doi: 10.13063/2327-9214.1265 . PMC   5226383 . PMID   28154835.
  41. Cyberinfrastructure for Network Science Center (CNS), School of Informatics and Computing, Indiana University. 2016. Places & Spaces: Mapping Science. Annual Report 2016. Available at https://scimaps.org/docs/PS_AnnualReport_2016_web.pdf
  42. Edward Vanden Berghe, Ron K. O'Dor and Paul Snelgrove, 2012: "The Census of Marine Life, the Ocean Biogeographic Information System, and where do we go from here? Future perspectives." In Conference proceedings: Progress in Marine Conservation in Europe 2012, pp. 229-237. Available at https://www.researchgate.net/publication/278405209_The_Census_of_Marine_Life_the_Ocean_Biogeographic_Information_System_and_where_do_we_go_from_here_Future_perspectives
  43. GDELT Project website, accessed 9 October 2021.
  44. United Nations Development Program (UNDP) press release, July 5, 2018: UN Biodiversity Lab launched to revolutionize biodiversity planning and reporting. Accessed 13 October 2021.
  45. United Nations Environment Program (UNEP) press release, 4 October 2021: Launch of UN Biodiversity Lab 2.0: Spatial data and the future of our planet. Accessed 13 October 2021.
  46. Min Chen, Shiwen Mao, Yin Zhang & Victor C.M. Leung, 2014: "Big Data - Related Technologies, Challenges and Future Prospects." Springer Cham Heidelberg New York Dordrecht London, 89 pp. ISBN   978-3-319-06244-0
  47. Buckminster Fuller Institute. "R. Buckminster Fuller's Geoscope". Buckminster Fuller Institute. Archived from the original on October 7, 2008. Retrieved 2009-05-23.
  48. "The Digital Earth: Understanding our planet in the 21st Century". digitalearth-isde.org [archived version]. 1998-01-31. Archived from the original on 2016-03-04. Retrieved 2021-09-21.
  49. Mahdavi-Amiri, A.; Alderson, T.; Samavati, S. (2015). "A Survey of Digital Earth". Computers & Graphics. 53: 95–117. doi:10.1016/j.cag.2015.08.005.
  50. Issautier, Benoît; Viseur, Sophie; Audiganez, Pascal; le Nindre, Yves-Michel (2014). "Impacts of fluvial reservoir heterogeneity on connectivity: Implications in estimating geological storage capacity for CO2". International Journal of Greenhouse Gas Control. 20: 333–349. doi: 10.1016/j.ijggc.2013.11.009 .
  51. ANU Centre for Advanced Microscopy: Wild M400 Photomacroscope
  52. Jill Linz & Cindy Schwarz (2009). Adventures in Atomville: The Macroscope. Small World books. DOI:978-0972262316
  53. TechMonitor: Clebern bursts onto the software scene with object-oriented Macroscope environment (CBR staff writer, September 9, 1991)
  54. Fujitsu.com: Methodology: Macroscope (archived page)